探究1 对勾函数 $y = ax + \frac{b}{x}$, ab > 0 的图像与性质

探究人: 时间: 指导老师:

探究目的

- 1、掌握对勾函数的图像
- 2、掌握关于对勾函数的最值问题

探究器材

电脑或平板、手机等设备, Geogebra 软件, 实验手册

探究步骤

实验 1: 写出对勾函数 $y = x + \frac{2}{x}$ 的定义域,并在下面坐标系中尝试画出它的草图

实验 2:用 Geogebra 画出 $y = x + \frac{2}{x}$ 的函数图像,并对比实验 1 中所画草图

打开 geogebra 软件,选择"绘图"功能,在左侧输入栏中,依次输入"y""=""x" "+""2""/""x",即可得函数 $y = x + \frac{2}{x}$ 及其图像。将其画在下面坐标系:

对比实验1中所画草图,并思考:是否几乎一致?抑或是有较大区别,区别在哪?造成 区别的原因是什么? 实验 3: 在下面坐标系中尝试画出 $y = 2x + \frac{2}{x}$ 的草图

实验 4:用 Geogebra 画出 $y = 2x + \frac{2}{x}$ 的函数图像,并对比实验 3 中所画草图

打开 geogebra 软件,选择"绘图"功能,在左侧输入栏中,依次输入"y""=""2" "x""+""2""/""x",即可得函数 $y = 2x + \frac{2}{x}$ 及其图像。将其画在下面坐标系:

实验 5:改变对勾函数 $y = ax + \frac{b}{x}$, ab > 0中 a、b 的值,观察函数图像特征

第一步:打开资源包中的"对勾函数的图像.ggb"文件。

第二步:通过滑动条改变 b 的值,观察函数图像变化。

第三步:通过滑动条改变 a 的值,观察函数图像变化。

第三步:点击"极值点"按钮,显示两个极值点,改变 a、b 的值,观察极值点的变化规律, 猜想极值点与 a、b 值的关系。

第四步:点击 " $\sqrt{\frac{b}{a}}$ 的值" 按钮, 找到极值点与 a、b 值的关系。

探究结论

在实验3中,得出结论:

1、对勾函数关于____对称,是一个____函数(填"奇"或"偶");

2、对勾函数极小值点为____,极小值为____;极大值点为____,极大值为____;

- 3、对勾函数的单调递增区间为_____;单调递减区间为_____;
- 4、在定义域内,对勾函数没有最值;
 - 当 x>0 时, x=___时, 对勾函数取得最小值, 最小值为____。 当 x<0 时, x=___时, 对勾函数取得最大值, 最大值为____。

交流与反思

1、通过基本不等式或函数求导,试求当 x>0 时,对勾函数的最小值,并说明此时 x 的值。

2、仔细观察实验5中对勾函数的图像,它本质上是一个我们所学过的什么曲线呢?

探究练习

- 1、对勾函数 $y = x + \frac{10}{x} (2 \le x \le 7)$ 的最小值为____, 此时 x=___. 2、对勾函数 $y = 2x + \frac{4}{x} (2 \le x \le 4)$ 的最小值为____, 此时 x=___. 3、对勾函数 $y = x + \frac{4}{x} (-10 \le x < 0)$ 的最大值为____, 此时 x=___. 4、对勾函数 $y = 3x + \frac{27}{x}$ 的增区间为_____.
- 5、若-4<x<1,则y = $\frac{x^2-2x+2}{2x-2}$ 的最大值为_____
- 6、若 x>2, 则 $y = x + \frac{1}{r-1}$ 的值域为_____.

探究练习参考答案

- $1, 2\sqrt{10}, \sqrt{10}$
- 2、2,6
- 3、 -2, -4
- $4 (-\infty, -3) (3, +\infty)$
- 5、-1
- 6、(3,+∞)