

Related Rates

By: Arq

By: Arq. Monica M. Paniagua, Ing. Ziad Najjar, Lic. Lucy Solis, Lic Carmela de la fuente

Name Brenda Sarchez 10 + 101570335 Date 27/0/2017

Related rates

A spherical balloon is being filled at a rate of 50in³/sec, at what rate does the radius increase

$$\frac{dV}{dt} = 50 \frac{\ln^3}{S} \frac{r_2 \sin V}{dt} = 4 \pi 3 r^3 \frac{dr}{dt} \frac{50 - 4 \pi (5)^2}{(5)^2 + 4 \pi 3 r^3} \frac{dr}{dt} = \frac{dr}{dt}$$
area of a circle is increasing at a rate of 20in³/min. Find the rate at which the

2. The area of a circle is increasing at a rate of 20in²/min. Find the rate at which the radius is

increasing when the radius is
$$4in$$
.

A= $\pi r^2 \left| \frac{dA}{dt} = 20 \frac{dr^2}{min} \right| r = 4in \left| \frac{dr}{dt} = 20 \frac{dr}{dt} = 10 \frac{$

3. A stone is thrown into a lake and a circular ripple moves out at a constant rate of 0.5 meters/sec. Find the rate at which the circle's area is increasing at r = 0.4 meters.

$$A = \pi r^{2}$$

$$\frac{dA}{dt} = \pi a r(0.5)$$

$$\frac{dA}{dt} = \frac{2}{5\pi} \frac{m}{s}$$

4. Air is being pumped into a spherical balloon making the radius change at a constant rate of 0.5cm/sec. Find the rate of change of the volume and the rate of change of the surface area when the radius is 10cm $(V = \frac{4}{5}\pi r^3, A = 4\pi r^2)$

$$\frac{dV}{dt} = \frac{4}{3} \pi 3r^{2} \frac{dr}{dt}$$

$$V = \frac{4}{3} \pi r^{3}$$

$$\frac{dV}{dt} = 4\pi (10)^{2} (0.5)$$

$$\frac{dA}{dt} = 4\pi 2(10)(0.5)$$

$$\frac{dA}{dt} = 4\pi 2(10)(0.5)$$

$$\frac{dA}{dt} = 4\pi 2(10)(0.5)$$

$$\frac{dA}{dt} = 4\pi 2(10)(0.5)$$

5. A cone is increasing in size as time goes by in such a way that the volume is changing at a constant rate of 75cm3/min. The height is twice the radius. Determine the rate of change of the height, when the height is 5cm. $(V = \frac{1}{2}m^{-1}h)$

height, when the height is 5cm.
$$(V = \frac{1}{7}\pi^2h)$$

$$\frac{dV}{dt} = 75 \frac{cm}{min} \qquad V = \frac{\pi}{3} \left(\frac{h}{2}\right)^2 h \qquad \frac{dh}{dt} = 3.82 \frac{cm^3}{mn}$$

$$h = 2r \Rightarrow r = h \qquad V = \frac{\pi}{12} \qquad V = \frac{\pi}{12} \qquad 3h^2 \frac{dh}{dt} = \frac{\pi}{4} h^2 \frac{dh}{dt}$$

$$h = 5cm^3$$

