
Teacher Solution to the Task

1. To solve the equation z3 !1 = 0  one could try solving by allowing z = a + bi  and then 
expanding to the following:

 

a + bi( )3 !1 = 0
a3 + 3a2bi + 3a bi( )2 + bi( )3 !1 = 0
a3 ! 3ab2 !1( ) + 3a2b ! b3( )i = 0

At this point, separating the problem into the real imaginary components we would have the 
following system of equations:

 
a3 ! 3ab2 !1 = 0
3a2b ! b3 = 0

Solving:

 

3a2b ! b3 = 0

b 3a2 ! b2( ) = 0
b = 0, or 3a2 ! b2 = 0

a = ± b
3

   

if b = 0 :

a2 ! 3a 0( )2 !1 = 0
a2 = 1
a = ±1
" z = 1+ 0bi or z = !1+ 0bi
but, z = !1 doesn 't satisfy the original equation

 

if a = b
3

b
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An easier solution to solving z3 !1 = 0  is to use De Moivre’s Theorem:

 

z3 = 1
z3 = cis 0 + 2n!( ), n "!
# z = cis 0 + 2n!( )$% &'

1
3

z = cis 1
3 2n!( )$% &'

if n = (1,0,1

z = cis ( 2!
3( ), cis 0( ), cis 2!

3( )

putting these solutions into cartesian coordinate form gives:

z = cis ! 2"
3( )

= cos ! 2"
3( ) + i sin ! 2"

3( )
= ! 1

2 !
3
2 i

  

z = cis 0( )
= cos 0( ) + i sin 0( )
= 1+ 0i

  

z = cis 2!
3( )

= cos 2!
3( ) + i sin 2!

3( )
= " 1

2 +
3
2 i

Placing these three solutions on the Argand plane gives the following:

Note the following:

• the three roots are symmetrically placed such that the three complex numbers form an 
equilateral triangle

• the length of each segment that connects two of the complex roots is 3 ! 1.73units

• if we draw lines from one root to the other two roost it then follows that the sum of these 
distances would be 3 + 3 = 2 3units

• if we multiply these two lengths the result is 3
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2. Solving z4 !1 = 0  using De Moivre’s theorem:

 

 

z4 = 1
z4 = cis 0 + 2n!( ), n "Z

z = cis 0 + 2n!( )#$ %&
1
4

z = cis n!
2( )

so, for n = '1,0,1,2 we have

z = cis ' !
2( ),cis 0( ),cis !

2( ),cis !( )
in cartesian coordinate form : z = 'i,1,i,'1

Graphing the solutions on the Argand plane with a unit circle gives the following:

Note:

• it should be noted that an n-sided regular polygon is formed once connecting all the adjacent 
roots of the equation zn !1 = 0

• when n = 4,  we have a square with side lengths of 2 , an example of one of the side 

calculations is:

d = cos 0( ) ! cos "
2( )( )2 + sin 0( ) ! sin "

2( )( )2

= 1! 0( )2 + 0 !1( )2

= 2
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• If we determine the distance from the root at 1,0( )  to each of the other three roots we will find 

the total distance to be  2 + 2 + 2 = 2 2 + 2  units.

• the product of the three distances is 2 ! 2 ! 2 = 4

3. Solving z5 !1 = 0  using De Moivre’s

 

z5 = 1
z5 = cis 0 + 2n!( ), n "Z

z = cis 0 + 2n!( )#$ %&
1
5

z = cis 2n!
5( )

so, for n = '2,'1,0,1,2 we have
z = cis ' 4

5 !( ),cis ' 2
5 !( ),cis 0( ),cis 2

5 !( ),cis 4
5 !( )
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Note on Technology Use

• the diagrams were done using sliders in GeoGebra. A point was defined as cos 2a!
n( ),sin 2a!

n( )( ) , 

where the variables n  and a  were adjusted for each case

• for example, when solving z5 !1 = 0 , n  was set to 5  and the slider a  was defined as

 a !Z | "2 # a # 2{ } . Then trace was set on and the animation was turned on. The solutions 

were then plotted and the line segments were added in after the plotting of the solution points.

• Since the animation with the trace feature on only indicated where the roots appeared, but did 
not give the actual points at the roots - when the line segments were put in manually afterwards 
the points did not end up in the precise location.

• if I was willing to devote more time I could improve upon this process by manually defining 7 or 
8 points as:

‣ A cos 2n!
a

"
#$

%
&'
,sin 2n!

a
"
#$

%
&'

"
#$

%
&'

‣ B cos
2 n +1( )!

a
"
#$

%
&'
,sin

2 n +1( )!
a

"
#$

%
&'

"
#$

%
&'

‣ C cos
2 n + 2( )!

a
"
#$

%
&'
,sin

2 n + 2( )!
a

"
#$

%
&'

"
#$

%
&'

Algebraically Finding the Distances
• We only need to find two of the distances and by symmetry the other two respective side lengths 

will be the same.

• Therefore, we will find the distance from 1,0( )  to the points defined as cis 2!
5( )  and cis 4!

5( ).

1,0( ) to cis 2!
5( )

d = 1" cos 2!
5( )( )2 + 0 " sin 2!

5( )( )2
# 0.47746 + 0.90451

# 1.381966
# 1.17557

   

1,0( ) to cis 4!
5( )

d = 1" cos 4!
5( )( )2 + 0 " sin 4!

5( )( )2
# 3.27254 + 0.34549

# 3.61803
# 1.90211

• the sum of the distances would then be 2 1.17557( ) + 2 1.90211( ) ! 6.15537

• the product of these distances would be 1.7557( )2 1.90211( )2 = 5
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Forming a Conjecture
• The results found for the sums of the lengths from one root to the other roots is given in the 

table below:

n Distances Sum

3 3 + 3 2 3 ! 3.464102

4 2 + 2 + 2 2 + 2 2 ! 4.828427

5

Using GeoGebra (approximate values)

1.176 +1.904 +1.906 +1.172
Approximately 6.158units

5
Using the algebraic method with a TI-84

2 1.17557( ) + 2 1.90211( )
Approximately 6.155units

Note:
• At this point the students need to come up with the correct conjecture. I think having the 

students focus on the first two cases only and not focusing on the SUM may help them see the 
trick!

• Before allowing the students to get to far into the task, I think we will need to discourage any 
other patterns they come up with.

• Other patterns are there, but I think they will not tie into the factorization nor will they expand 
into the cases where the modulus is not one

Conjecture

• For zn !1 = 0,  if one root is isolated and then the distances are found from that one root to the 

other n !1  roots, then the product of the distances will equal n.

What about n of 2? n of 1?

• z2 = 1  will give two real and only two real roots, but these roots will be !1,0( )  and 1,0( ).  These 

two roots are at a distance of two units away. Here, the distance between the two roots is equal 
to the exponent, 2.

• if we have n = 1,  then the equation zn = 1  becomes simply z = 1.  In this case we have no roots to 

find the distance to the only one root present and so this case does not fit our general statement.

Correct Conjecture

• For zn !1 = 0,   n !Z, n " 2  if one root is isolated and then the distances are found from that one 

root to the other n !1  roots, then the product of the distances will equal n.
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Factorization

z3 !1
PZV 's :±1
if z = 1, P 1( ) = 0" z !1 is a root

z !1( ) z2 + az + b( )
a = b = 1

z !1( ) z2 + z +1( )

   

z4 !1
PZV 's :±1
if z = 1, P 1( ) = 0" z !1 is a factor

z !1( ) z3 + az2 + bz + c( )
a = b = c = 1

z !1( ) z3 + z2 + z +1( )
z !1( ) z +1( ) z2 + az + b( )
z !1( ) z +1( ) z2 ! z +1( )

z5 !1
if z = 1, P 1( ) = 0" z !1 is a root

z !1( ) z4 + az3 + bz2 + cz +1( )
a = b = c = 1

z !1( ) z4 + z3 + z2 + z +1( )
z !1( ) z2 +

1+ 5
2

#

$%
&

'(
z +1

#

$
%

&

'
( z2 +

1! 5
2

#

$%
&

'(
z +1

#

$
%

&

'
(   

 

z4 + z3 + z2 + z +1

= z2 + az +1( ) z2 + bz +1( )
so,
a + b( )z3 = 1z3
ab + 2( )z2 = z2
a + b( )z = z
!a + b = 1 and ab = "1
a = 1" b 1" b( )b +1 = 0

b2 " b "1 = 0

so, b = 1± 5
2

this givesa =
1! 5
2

Alternatively, since z5 !1 = 0  has roots of 1,cis ± 2!
5( )  and cis ± 4!

5( )  to determine the quadratics we 

could multiply the conjugates. This would give us:

z ! cos 2"
5( ) ! i sin 2"

5( )( ) z ! cos ! 2"
5( ) ! i sin ! 2"

5( )( )
= z ! cos 2"

5( ) ! i sin 2"
5( )( ) z ! cos 2"

5( ) + i sin 2"
5( )( ), as cos# = cos !#( ) and sin# = ! sin !#( )

= z2 ! 2zcos 2"
5( ) + cos2 2"

5( ) + sin2 2"
5( )

= z2 ! 2zcos 2"
5( ) +1, since cos2# + sin2# = 1
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z ! cos 4"
5( ) ! i sin 4"

5( )( ) z ! cos ! 4"
5( ) ! i sin ! 4"

5( )( )
= z ! cos 4"

5( ) ! i sin 4"
5( )( ) z ! cos 4"

5( ) + i sin 4"
5( )( ), as cos# = cos !#( ) and sin# = ! sin !#( )

= z2 ! 2zcos 4"
5( ) + cos2 4"

5( ) + sin2 4"
5( )

= z2 ! 2zcos 4"
5( ) +1, since cos2# + sin2# = 1

! z5 "1 = z "1( ) z2 " 2zcos 2#
5( ) +1( ) z2 " 2zcos 4#

5( ) +1( )

For the factoring it was unclear how far the students needed to go; I think linear and quadratic 
factors is su"cient. However, for the proof it may have been easier and better that the students 
simply listed the factorizations in the form:

z !1( ) z ! cos ! 2"
3( ) ! i sin ! 2"

3( )( ) z ! cos 2"
3( ) ! i sin 2"

3( )( )
= z !1( ) z ! cos 2"

3( ) ± i sin 2"
3( )( )

Using Technology to Test Other Cases

• for all values of n,  1,0( )  will always be a root

• if n  is odd then there will obviously be an odd number of roots, but one root will as indicated be 
1,0( )  and the other even number of roots will be in pairs that are vertical reflections of one 

another across the real axis.

• if n  is even then there will be an even number of roots, but two of the roots will always be 1,0( )  

and !1,0( ) . The remaining even number of roots will once again occur in pairs that are vertical 

reflections of one another across the real axis.

• with this in mind, as the students verified more cases using technology it was preferred that they 
did a at least one even and one odd value for n  (two or three cases was su"cient)

GeoGebra Usage
• As explained in the z5 !1 = 0  case, sliders where utilized to plot the points

• After the points were plotted, line segments were drawn in connecting the roots to the root 
1,0( )

• For each line segment the length of the line segment to four decimal places were displayed - in 
some cases the corresponding pairs of distances were not always exactly the same indicating 
there was some degree of error within GeoGebra. However, the products for the distances 
would consistently be n  if rounded to the nearest thousandths.
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if n is 7:

Multiplying the distances above given by GeoGebra:

• 0.8761( ) 1.5603( ) 1.9489( ) 1.9499( ) 1.561( ) 0.8655( ) ! 7.01832

If n is 10:

Multiplying the distances we would have:

2 1.9021( )2 1.618( )2 1.175( )2 0.618( )2 ! 9.98864100

Note:
• these values could be made closer to the desired 7 and 10 by having GeoGebra show more 

decimals or by linking points to the sliders as explained earlier.
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Proof of Our General Statement
• I think this part of the task was going to be extremely di"cult and may actually advise my 

students that perhaps skipping this may be a strategic time management decision. A lack of a 
formal proof precludes the students from a perfect five out of five for the results; but the correct 
general statement with the correct scope and limitations is four out of five.

In looking at the factorizations it should be noted that zn !1  will always factor to:

• z !1( ) zn!1 + zn!2 + ...+ z2 + z +1( )
However, the factorization of zn !1  is also:

• z !1( ) z ! w( ) z ! w2( )... z ! wn!1( ),  where w  is the complex root with the smallest argument

from this we have:

z !1( ) zn!1 + zn!2 + ...+ z2 + z +1( ) = z !1( ) z ! w( ) z ! w2( )... z ! wn!1( )
zn!1 + zn!2 + ...+ z2 + z +1( ) = z ! w( ) z ! w2( )... z ! wn!1( )

If z = 1  then the left hand side will become n  and the right hand side is 1! w( ) 1! w2( )... 1! wn!1( )
So, from here we can deduce that their modulus’ should be equal, and so:

n = 1! w( ) 1! w2( )... 1! wn!1( )
n = 1! w( ) 1! w2( )... 1! wn!1( )
"n = 1! w # 1! w2 # ...# 1! wn!1 , as z1z2 ...zn = z1 z2 ... zn

Note:

• the above proof is from the OCC from Ferenc Beleznay.

• I would really like to thank Ferenc for this eloquent, yet simple proof that was 
within my realm of understanding!!
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Part B

• Solving zn = i  for values of n = 3,4,5

 

z3 = i

z3 = cis !
2 + 2n!( ), n "Z

# z = cis !
6 +

2n!
3( )

so, for n = $1,0,1

z = cis $ !
2( ),cis !

6( ),cis 5!
6( )

  

Note:

• this is the same diagram as z3 = 1 , except that the three roots have all been rotated about the 

origin !6 radians

• so, the product of the distances in this case will also be 3,  since 3 ! 3 = 3

 

z4 = i

z4 = cis !
2 + 2n!( ), n "Z

z = cis !
8 +

n!
2( )

so, for n = #2,#1,0,1

z = cis # 7!
8( ),cis # 3!

8( ),cis !
8( ),cis 5!

8( )
 

Note:

• As z3 = i  is the same as z3 = 1,  except rotated about the origin !
6 radians  the case of z4 = i  is 

the same as z4 = 1  except rotated about the origin !
8 radians
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z5 = i

z5 = cis !
2 + 2n!( ), n "Z

z = cis !
10 +

2n!
5( )

so, for n = #2,#1,0,1,2

z = cis # 7!
10( ),cis # 3!

10( ),cis !
10( ),cis 5!

10( ),cis 9!
10( )

 

Note

• z5 = i  is the same as z5 = 1,  except rotated about the origin !
10 radians

Once again, what about n of 2?

• z2 = i  gives results of z = cis !
4( ),cis " 3!

4( ) . As the di!erence between the arguments is !  

radians the roots are opposite ends of a diameter of the unit circle and so the distance is two 
which is equal to the value of n  and so the general statement still holds.

Other Cases where the modulus is still one
• Here it was expected that the students did one or two explicit examples, although the explicit 

examples where not necessary if they could come up with the following generalizations

In solving zn = c,  where c = 1  and argc = !  then it follows that:

‣ we will still end up with an n-sided regular polygon in the unit circle

‣ the roots would be the same as in the case of zn = 1,  except that they would be rotated 

about the origin by an angle of !n

Example:

• Find the roots for z3 = ! 3
2 + 1

2 i

z3 = 1cis 3!
4 + 2n!( )

z = cis !
4 +

2n!
3( )

for n = "1,0,1

z = cis " 5!
12( ),cis !

4( ),cis 11!
12( )

As the diagram to the right illustrates, the roots 
still form an equilateral triangle in the unit circle 
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and the roots are the same as in the case of zn = 1  only rotated about the origin by an angle of !4  

radians, which comes from 3!4 ÷ 3 .

So, for all cases of zn = c,  where  n !Z, n " 2  and c = 1  the general statement holds. The product 

of all the distances from one of the roots to the other n !1( )  roots will be n.

Modulus Other than One
• Here again, I think the students will have needed to do a few examples to begin to see a pattern. 

I would have expected two or three examples.

• The pattern to be discovered in this final bullet is as follows:

‣ for zn = c,  where  n !Z+ , n " 3 and  c !!  then if the n  roots are found and the distance 

from all of the roots to one specific root is found and then multiplied the product will be 

n ! c
n"1
n

General Proof of this Case

for zn = c,  let argc = !  and so if we solve by changing c  into polar form and then applying De 

Moivre’s theorem we will have the following:

 

zn = c cis ! + 2k"( ), k #Z

z = c cis ! + 2k"( )$% &'
1
n

z = cn cis !
n +

2k"
n( )

for k = 0,1,2,...,n (1

z = cn cis !
n( ), cn cis !

n +
2"
n( ),..., cn cis !

n +
2 n(1( )"

n( )

At this point it can be noted that the roots will be located symmetrically around the origin, but not 

on the unit circle, but on a circle with radius of cn  units. The first root will also be at an angle of 

!
n , which follows from our previous result of cases where the modulus of c  is one.

Now, in finding the distances from all the roots to the root cn cis !
n( ) . To illustrate what will 

happen, I will show the result from finding the distance from cn cis !
n( )  to cn cis !

n +
2"
n( ) :

MATHEMATICS HL! ! NOVEMBER EXAMINATIONS 2013

16! ! PATTERNS IN COMPLEX NUMBERS (TYPE I)



d = cn cos !
n( ) " cn cos !

n +
2#
n( )$

%
&
'
2
+ cn sin !

n( ) " cn sin !
n +

2#
n( )$

%
&
'
2

= cn cos !
n( ) " cos !

n +
2#
n( )( )$

%
&
'
2
+ cn sin !

n( ) " sin !
n +

2#
n( )( )$

%
&
'
2

= c
2
n cos !

n( ) " cos !
n +

2#
n( )( )2 + c

2
n sin !

n( ) " sin !
n +

2#
n( )( )2

= c
2
n cos !

n( ) " cos !
n +

2#
n( )( )2 + sin !

n( ) " sin !
n +

2#
n( )( )2$

%(
&
')

= c
1
n cos !

n( ) " cos !
n +

2#
n( )( )2 + sin !

n( ) " sin !
n +

2#
n( )( )2

In the end we would have n !1  distances to multiply, and all of these distances would have c
1
n , 

which means that the final product will contain c
n!1
n .

Furthermore, from the cases when c = 1  it was shown that the product of the distances would 

equal n.  Hence, 

cos !
n( ) " cos !

n +
2#
n( )( )2 + sin !

n( ) " sin !
n +

2#
n( )( )2 $ cos !

n( ) " cos !
n +

4#
n( )( )2 + sin !

n( ) " sin !
n +

4#
n( )( )2 $ .

..$ cos !
n( ) " cos !

n +
2n"2( )#

n( )( )2 + sin !
n( ) " sin !

n +
2n"2( )#

n( )( )2 = n

And so, the product of all the distances will be n ! c
n"1
n
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