Introduction to Graph

Reference:
https://www.geeksforgeeks.org/graph-types-and-applications/
https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://www.britannica.com/topic/graph-theory

https://medium.com/basecs/whats-a-linked-list-anyway-part-1-
d8b7e6508b9d#.3zvtp22ui

https://dev.to/thisdotmedia/5-minute-introduction-to-cypher-query-language-45e2

https://www.geeksforgeeks.org/graph-types-and-applications/
https://medium.com/basecs/a-gentle-introduction-to-graph-theory-77969829ead8
https://www.britannica.com/topic/graph-theory
https://medium.com/basecs/whats-a-linked-list-anyway-part-1-d8b7e6508b9d#.3zvtp22ui

- 000

!

|

L)

we vavevee ’hwmok |
elements modes i

Se%uen—t{ allld. :

t In linear dﬁ‘!’k S""Vuc,-\-u,'v.es" | /é\)

wemmeg | 1L}

one NoAeL miﬁlﬂ' be cmnur’cd

In nom=linear datn Shuchuves, T

to seveva| other wnodes, so it

canh alwalfs be 'bmwvstdsef)uen‘ﬁd“loa.

P ik graphe e dind s ool

o pes, wikl o farte: yprhoes o oges:
 Sehets bhe defivitin of < grarh?
A Paniiai AR

.\’(\u)(\‘\\‘-’- L . .
| 0 T - V E. w\«uLVisase’o o# r\odes,' :
: ‘\/"G | :(:’. :): PR el g

ond E isa et of ed £S5,

---------------- also called i

.\- 8 Ve\'r{\ce,s/ngo\es: |

. i edSes/\(ﬂkﬁ |

ﬁﬂv.ﬁ,fﬁﬁﬁ:ﬁﬁﬁﬁﬂ'ﬁ""’%s ,(v,’a o
| E*—iivwl} . %W\ .;:J;:m,\
7 G '{-\‘,\ VoY A OMOY\‘FW G 1nin
T T .}) S . .caya..l; - 6
B kL. A i-===->fAd' gh G s o
ovvy, SV i ok
| ‘ - Eyasded ed.ats :
L _SyB v6] u\ﬁ
v {VS)'V'}". . ﬁf“aﬁdtgr\nwfhma:\m(
fhese edge {V\'\‘ VG} - obeds jn wk‘cl,\ The
{VU(V'-?- »v-»-'ov&zvo‘? wtsm

ave wadvder 2 '}; ' e P” s
sl fvs,v8)

But what dbout . -
- & divected %rqfh? -

.......... (\’\ \l5) >f\’\3e§(’.
R sl
(2, v?) dobliims

Aﬂﬁiﬁﬁ'iﬁﬁ}ﬁﬁﬁﬁﬂiﬂmmqm{{

-——————_

Yaws 7,

............. Aweo{wm\ Mﬁﬂb“

Finite Graphs

* A graphis said to be finite if it has a
finite number of vertices and a finite
number of edges.

Infinite Graph:

e A graph is said to be infinite if it has an
infinite number of vertices as well as
an infinite number of edges.

Tri\[ial G ra ph : A graph is said to be trivial if a finite graph contains only

one vertex and no edge.

simple graph multigraph complete graph

. O,

Y

[4] [€ 2]
graph with loop digraph

© 2013 Encyclopaedia Britannica, Inc.

Si m Ie G ra h ° A simple graph is a graph that does not contain more than one edge
p p ° between the pair of vertices. A simple railway track connecting different

cities is an example of a simple graph.

[]
M u I t I G ra p h [] Any graph which contains some parallel edges but doesn’t contain any self-loop is called a multigraph. For example a Road Map.
[]

eParallel Edges: If two vertices are connected with more than one edge then such edges are called parallel edges that are many
routes but one destination.

eLoop: An edge of a graph that starts from a vertex and ends at the same vertex is called a loop or a self-loop.

6. N u " G ra ph : A graph of order n and size zero is a graph where there are only

isolated vertices with no edges connecting any pair of vertices.

V1 V2

V3

V4

CO m p I Ete A simple graph with n vertices is called a complete graph if the degree of

each vertex is n-1, that is, one vertex is attached with n-1 edges or the rest
G ra p h of the vertices in the graph. A complete graph is also called Full Graph.

Bipartite Graph:

A graph G =(V, E) is said to be a
bipartite graph if its vertex set V(G) can
be partitioned into two non-empty
disjoint subsets. V1(G) and V2(G) in
such a way that each edge e of E(G)
has one end in V1(G) and another end
in V2(G). The partition V1UV2=Vis
called Bipartite of G. Here in the figure:
V1(G)={V5, V4, V3}and V2(G)={V1, V2}

Digraph
Graph

A graph G = (V, E) with a mapping f
such that every edge maps onto
some ordered pair of vertices (Vi, Vj)
are called a Digraph. It is also

called Directed Graph. The ordered
pair (Vi, Vj) means an edge between
Vi and Vj with an arrow directed
from Vi to Vj. Here in the figure: el =
(V1,V2)e2=(V2,V3)ed =(V2, V4)

€5

Subgraph

A graph G1 =(V1, E1) is
called a subgraph of a graph
G(V, E) if V1(G) is a subset of
V(G) and E1(G) is a subset of
E(G) such that each edge of
G1 has same end vertices as
in G.

Vo

eb

V1

a5

el

Vi

V2

fr il

e3

ed

V3

Connected or

Disconnected Graph:

Graph G is said to be connected if any
pair of vertices (Vi, Vj) of a graph G is
reachable from one another. Or a graph is
said to be connected if there exists at
least one path between each and every
pair of vertices in graph G, otherwise, it is
disconnected. A null graph with n vertices
is a disconnected graph consisting of n
components. Each component consists of
one vertex and no edge.

(a)

Cyclic
Graph

A graph G consisting of n
vertices and n> = 3 that is

V1, V2,V3-——-Vnand
edges (V1, V2), (V2, V3),
(V3, V4)- ———(Vn, V1) are

called cyclic graph.

V2

el

V1

ed

el

V3

name: ‘Ahsoka’,
rank: ‘apprentice’,
age: 20

name: ‘Yoda’,
rank: ‘master’,
age: 900

MENTORING

¢
2
»
%
(

Our data

Since we need something to
work on first, we will introduce
the following graph database:

:MENTORING

name: ‘C-3P0’ name: ‘Anakin’, name: ‘Obi-wan’,
rank: ‘knight’, rank: ‘master’,
age: 28 age: 35

https://res.cloudinary.com/practicaldev/image/fetch/s--kDUCXcCd--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/http://images.ctfassets.net/zojzzdop0fzx/1IgeAMlX65GYaKHkXAkHxr/98abae2631578bf8ea41b23222ac7be5/starwars_db.png

Writing queries in Cypher

After having a basic understanding of what a graph is, and how the data is
composed in the database, you'll find the syntax of Cypher very simple and
intuitive to read and write. It is inspired by ASCII art, so you actually model
your queries in a some graphical manner. Let's get started.

Nodes and relationships

Let's start with the core structures of the graph -- nodes and relationships -
- they are represented by () and [] plus < or >. For example, let's take a
look at the relationship between Anakin and Padme, and how it can be
represented with Cypher:

(:Jedi)-[:LOVES]->(:NonJedi)

Simple, isn't it? The arrows show how the nodes relate based on the
relationship type that we have. Also, we have labels (or tags), which indicate
the type of the nodes and the relationship.

Getting data with maTcH

We'll start with some basic examples of fetching data. I'll re-use the query
from the previous section. Along with the match keyword, we will be able to
ask the database whether there are nodes that match our provided pattern,
or subgraph.

The following query will return all jedi that are in love with non-jedi
characters.

MATCH (j:Jedi)-[:LOVES]->(:NonJedi)

RETURN

You probably noticed that we introduced a § in the query. This is simply a
variable used for referring to the jedi node. Note that we can use these for
relationships as well.

Conditional fetching

Just like in a conventional relational database, we can specify some criteria
when fetching data. With Cypher, we have two ways to do that:

1. Inlined JSON-like object

Let's take a look at the following query:

MATCH
(j1:Jedi { rank: 'master” })-[:MENTORING]->(j2:Jedi)

RETURN

Jj2.name

_ Note: Both single and double quotes are valid._

We can describe it as: "Return the names of all jedis who are mentored by a
Jedi master. Again, this results in getting Anakin's name, but not Ahsoka.
Now, we'll write the same query but a bit differently:

2. Using WHERE

MATCH
(j1:Jedi)-[:MENTORING]->(j2:Jedi)
WHERE

jl.rank = 'master’
RETURN

J2.name

Using the wHERE clause is equivalent to inlining the JSON-like object in a
node. However, it is a fuller and more powerful way of specifying our
desired criteria compared to the latter. For example, we can perform a
boundary check of a numerical data, whereas that would be impossible

with the first approach:

MATCH
(§1:Jedi)-[:MENTORING]->(j2:Jedi)
WHERE

jl.age < 108
RETURN

32 .name

I'\."_"_-r_‘ N LN B N) A W L L R] L'Ir_‘r\.r'l-r LN Tt T e I s) Ll I'_-I'l_'l'l.l‘\.r'll'_llllr.ll'l_" T L

Updating the existing data

After we have a good perception of how data is fetched from the database,
we can spend a minute on how it can be updated. This happens with the

help of the set keyword:

MATCH

1

(§:Jedi { name: 'Anakin' })

SET
J-place0fBirth = 'Tatooine'
j-dateOfBirth = '41 BBY'
RETURN

]

The explanation is obvious -- based on the provided search criteria, we

perform an update via ser on the returned results. That's it!
L __|]

Creating new data

In this sub-section, we will introduce two more keywords needed for
adding new data to our database. These are create and wmercE . Let's start
with a simple example of "create™:

CREATE (:Jedi { name: 'Qui-Gon' })

As you might have guessed, it simply adds a new node to our database. But
what if we want to create a relation with this node? Well, here, merce comes
in handy. It is intended for ensuring that the provided pattern exists in the
database, which means that if it doesn't, it will be created.

Using the example we have, we can extend it so that Obi-Wan is an
apprentice of Qui-Gon:

CREATE

(qg:Jedi { name: 'Qui-Gon Jinn' })

MERGE
(qg)-[:MENTORING]->(:Jedi { name: 'Obi-Wan" })

	Introduction to Graph
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Finite Graphs�
	Infinite Graph: �
	Trivial Graph: �
	Slide Number 8
	Simple Graph:�
	Multi Graph:�
	6. Null Graph:�
	Complete Graph
	Bipartite Graph:�
	Digraph Graph�
	Subgraph
	Connected or Disconnected Graph:�
	Cyclic Graph
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24

