Example 3:
A boat is pulled in to a dock by a rope with one end attached to the front of the boat and the other end passing through a ring attached to the dock at a point 1 m higher than the front of the boat. The rope is being pulled through the ring at the rate of $1 \mathrm{~m} / \mathrm{sec}$. How fast is the boat approaching the dock when 8 m of rope are out?

Solution:

Step 1: Draw a picture.

The boat is approaching to the dock. This distance is unknown and let x denote that distance. It is known that the pulley is 1 meter higher than the front of the boat and let h denote this height. It is the constant value.
y denotes the length of the rope that the boat is pulled. From the figure above it can be noted that the angle $\Varangle C D E$ is the right angle.

Since the rope is being pulled at the rate of $1 \mathrm{~m} / \mathrm{sec}$, we know that $\frac{d y}{d t}=-1 \mathrm{~m} / \mathrm{sec}$. It is the negative value because the length of the rope is shorter and shorter by pulling the boat (it is shorter for 1 meter per second).

If the boat is apart 8 m from the dock, it is needed to find how fast the boat is approaching to the dock, i.e. the rate of change in the distance d between the boat and the dock per second. We need to find $\frac{d x}{d t}=? m / s$ when x is 8 m .

Note that both x and y are functions of time, and the height h is the constant.

Step 2: From the right triangle CDE we can use the Pythagorean Theorem to write an equation relating x and $y(h=1 \mathrm{~m})$:

$$
y^{2}=x^{2}+1^{2}
$$

Reminder

If h is a constant then $\frac{d h}{d t}=0$.

Step 3: Differentiating this equation with respect to time and using the fact that the derivative of a constant is zero, we arrive at the equation:

Co-funded by the Erasmus+ Programme of the European Union

We can use the Pythagorean theorem to determine the lenght y when $x=8 \mathrm{~m}$, and the height is 1 m . Solving the equation:

$$
\begin{gathered}
2 y \frac{d y}{d t}=2 x \frac{d x}{d t}+0 \\
\frac{2 y}{2 x} \frac{d y}{d t}=\frac{2 x}{2 x} \frac{d x}{d t} \\
\frac{2 \cdot 8.06 m}{2 \cdot 8 m} \cdot(-1 \mathrm{~m} / \mathrm{s})=\frac{d x}{d t} \\
\frac{d x}{d t}=-\frac{8.06}{8} \mathrm{~m} / \mathrm{s}=-1.011 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

