
With this we can define some alternative versions of the optimum angle:
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Observe that this is the arctangent of the initial velocity divided by the final velocity. This says that we 
have a right triangle, with the initial and final velocities perpendicular to each other (for this optimum 
angle), so that we have a hypotenuse of
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and then solve this for the angle. We get
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Using some trig identities (Tuma, p61), get everything in terms of one function; here, the tangent:

cos θ( )4

sin θ( )2
sin θ( )2

−
2 g y0

v0
2

=from whichv0 cos θ( )2
sin θ( ) v0

2
sin θ( )2

2 g y0+− 0=

The quantity in the first brackets cannot be zero, so
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To find the angle that will maximize this, we differentiate with respect to the angle, leaving the other 
parameters fixed. The derivative is
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The objective is to find the angle of launch that will maximize the range. Once we have this angle, we will 
find several other aspects of this trajectory. Start with the general range equation, developed elsewhere:

Optimum anglePROJECTILE MOTION

(c) W. C. Evans   2004 1



This uses the triangle for the initial and final velocities, for the optimal angle (see the arccosine version).
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Rmax v0 cos θopt( ) Topt=

Another way to get this is to solve for T in
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Again MCAD will not do all the algebra, and the result, by hand, is
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The TOF for this trajectory is found using the optimum angle in the general TOF equation:
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We would also like to know the maximum height attained during this optimal trajectory. For this we use 
the optimal angle in
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Next we seek the range attained if we use this angle. Placing Eq(2) into Eq(1), we will find a remarkably 
simple result (after some algebra, which this version of MCAD won't do, did it by hand, it works):
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Note that as the initial velocity 
becomes large, or the initial height 
becomes small, all these 
formulations approach 45 degrees.
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Setting these equal, we get

point (endpoint, at x=R) slope (final velocity vector)slope   intercept

y2 x( ) tan θR( ) x R−( ):= θRy1 x( ) tan θ( ) x y0+:= θ

To complete this analysis, we find the intersection point of the velocity vectors. This occurs when the 
initial vector and final vector y-values are equal.

we get 90 degrees. Note that the minus was not used in the final angle, since this angle is interior to the 
triangle defined by the horizontal and the velocity vectors. If these two angles add to 90 degrees then of 
course the remaining angle must be 90 degrees, and the vectors are perpendicular.
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Now we have that these slopes are negative inversely related, which is the condition for these tangent 
lines to be perpendicular. It is also the case that if we add these angles
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We see from the derivative above that the initial slope is just the tangent of the optimal angle, so that, 
from Eq(2),
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and then use the optimal angle in this; we then have the derivative (slope) at the endpoint:
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So if we use the range, derived above, for x, we get
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We have already seen that the initial and final velocities are perpendicular, but let's try to prove it. At the 
end of the trajectory, when the x-coordinate is the range (by definition), the derivative of y(x) gives the 
slope of the velocity vector. This derivative, anywhere on the trajectory, is
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If we substitute the definitions for these quantities, and do the algebra, we find some much simpler and 
interesting results, namely:
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The x intersection point is at one-half the maximum range, Eq(3). The y intersection happens to fall on the 
directrix of the trajectory (this is defined in the Parabolic Trajectory paper).
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