Task A: Construction of a Pyramid

To construct the 3D representation of a pyramid according to a question in Paper 1 of Compulsory Part, HKDSE 2014.

17. Figure 6(a) shows a solid pyramid VABCD with a rectangular base, where AB = 18 cm, BC = 10 cm, VB = VC = 30 cm and $\angle VAB = \angle VDC = 110^\circ$.

(Q. 17, Paper 1, Compulsory Part, Mathematics, HKDSEE 2014)

Create objects on the Graphics window as follows:

Steps	Objects to be created	Actions
1.	(Change View Setting)	• In "View" menu, choose "3D Graphics"
		• In the drop-down menu next to the header of "3D
		Graphics", choose the "Toggle Clipping Box"
		→ 3D Graphics
		to the right.
2.	The base of the pyramid	• In the "Graphics" window, add 4 points A, B, C and D
		at coordinates (0, 0), (18, 0), (18, 10) and (0, 10)
		respectively, then use the "Polygon" tool Ď to join
		A, B, C, D and A to form the base of the pyramid.
		• Check the "3D Graphics" window, the same rectangle
		should also be seen. Close the "Graphics" window.
3.	The vertex V according to	• Click the bottom-right corner of the "Sphere" tool
	the description of the question	and choose "Sphere with centre and radius".
		Click the point <i>B</i> in "3D Graphics" window.
		Type "30" in the "Radius" window.
		🗇 Sphere with Center and Radius
		Radius
		 Similarly, construct another sphere with centre at point
		<i>C</i> and radius of 30 units.
		Click the "Intersect Two Surfaces" button then
		choose the two spheres in the "Algebra" window.
		Hide the spheres by clicking the button next to the
		equations of the spheres in the "Algebra" window.
		Sphere e: $(x - 18)^2 + y^2 + z^2 = 900$ f: $(x - 18)^2 + (y - 10)^2 + z^2 = 900$
		• The intersection of the spheres is a circle.
		On the circle, add a point and rename it as V.
		Hide the circle.

Steps	Objects to be created	Actions
4.	Construct the pyramid <i>VABCD</i> according to the	• Click the "Pyramid" button 4 , then click the point
	description of the	V and the rectangle ABCD in order.
	question.	 Use "Angle" function to measure ∠VAB. Drag V until ∠VAB = 110°. Right-click the point V in "Graphics" window, and check the box "Fix Object" in "Object Properties". Basic Color Style Advanced Scripting <pre>Basic Color Style Advanced Scripting Show Labet: Name: Show Tace Show Tace</pre>
5.	(Optional) Construct	• In "Point" tools, choose "Midpoint or Centre"
	trapezium <i>MNQP</i> and the height of <i>VABCD</i> .	 In Point tools, choose Midpoint of Centre La to locate the midpoint of <i>VB</i> by clicking <i>V</i> and <i>B</i> in "Graphics" window. Rename the point as <i>M</i>. Similarly, construct <i>N</i>, <i>P</i> and <i>Q</i> accordingly. Use "Polygon" tool to construct trapezium <i>MNQP</i>. Click "Plane through 3 Points" button and then click <i>A</i>, <i>B</i> and <i>C</i> to create the base plane. Click "Perpendicular Line" button and then click <i>V</i> and the base plane to construct the perpendicular from <i>V</i> to the base of <i>VARCD</i>.

Task B: Construction of a Model of Paper-folding

To construct the 3D representation of a model of paper-folding according to a question in Paper 1 of Compulsory Part, HKDSEE 2015.

19. In Figure 3(a), ABCDB' is a pentagonal paper card. It is given that AB = AB' = 40 cm , BC = B'D = 24 cm and $\angle ABC = \angle AB'D = 80^{\circ}$.

(b) Suppose that $\angle BCD = 132^{\circ}$. The paper card in Figure 3(a) is folded along AC and AD such that AB and AB' join together to form a pyramid ABCD as shown in Figure 3(b). Find the

(Q. 19, Paper 1, Compulsory Part, Mathematics, HKDSEE 2015)

Create objects on the Graphics window as follows:

Steps	Objects to be created	Actions
1.	(Change View Setting)	 In "View" menu, choose "3D Graphics" In the drop-down menu next to the header of "3D Graphics", choose the "Toggle Clipping Box" 30 Graphics 30 Graphics and drag the slider to the right.
	ABCDB'	 Click the button "Circle with Centre and Radius" Click the button "Circle with Centre and Radius" Add a point <i>B</i> on the circle. Then click "Circle with Centre and Radius" to construct a circle centred at <i>B</i> with radius 24 units. Click the button "Angle with Given Size" , then click the points <i>A</i> and <i>B</i>, and fix the angle at 80° clockwise. Draw a ray from <i>B</i> along the angle created. Label the point of intersection of the ray and the smaller circle as <i>C</i>. Similarly, draw a ray from <i>C</i> such that the ray and <i>BC</i> form an angle of 132°. Click the button "Circle with Centre through Point" To construct a circle centred at <i>A</i> and passes through <i>C</i>. Label the point of intersection of the ray from <i>C</i> and this circle as <i>D</i>. From <i>D</i>, construct a circle with radius 24. Label the point of intersection of the ray from <i>C</i> and this circle as <i>D</i>. From <i>D</i>, construct a circle with radius 24. Label the point of intersection of this circle and the larger circle centred at <i>A</i> as <i>B</i>". Draw the pentagon <i>ABCDB</i>" by using the "Polygon" button <i>Poly</i>. Check the "3D Graphics" window, the same pentagon should also be seen.

Steps	Objects to be created	Actions
Steps 3.	Objects to be created The animation of the paper-folding process	 Actions Using the "Polygon" button, create two triangles ABC and AB'D. Create a slider α with the following settings: Interval

Task C: Solid of revolution

To create a dynamic worksheet to explore how a solid of revolution is generated and hence the method of calculation the volume of the solid.

Create objects on the Graphics window as follows:

Step	Objects to be	Actions
	created	
1.	(Change View Setting)	 Choose "3D Graphics" module. Choose to hide <i>xOy</i> plane and maximise the "Toggle Clipping Box" at the following drop-down tool bar: 3D Graphics In the "Ciew" menu, choose to open "Graphics" view. Move the "Graphics" window to the right and appropriately adjust the window size so that "3D Graphics" window is still clearly shown.
2.	A function of <i>x</i> to be discussed	 In "Graphics" window, enter an arbitrary function such as "f (x) = x²" in the input field. Then create an input box with caption "f (x) =", and link the box to f(x). Hide the graph of y = f(x).

Step	Objects to be created	Actions	
2.	A function of <i>x</i> to be discussed	 In "3D Graphics" window, define a parametric function c (t) by inputting "c(t)=curve[t,0,f(t),t,-20,20]". In "3D Graphics" window, define a parametric function c (t) by inputting "c(t)=curve[t,0,f(t),t,-20,20]". Teachers and students can key in other functions in x for other curves. 	
3.	Strips under the curve to demonstrate	 In "Graphics" window, create two sliders (named <i>p</i> and <i>d</i>), with the interval settings as follows respectively: slider <i>p</i>: Interval slider <i>d</i>: In "3D Graphics" window, define two points <i>P</i> and <i>P</i> ' by inputting "P=c(p)" and "P'=c(p+d)" respectively. Define another four points <i>H</i>, <i>H</i> ', <i>V</i> and <i>V</i> ' by inputting "H=P-p*(1,0,0)", "H'=P'-(p+d)*(1,0,0)", "V=P-f(p)*(0,0,1)" and "V'=P'-f(p+d)*(0,0,1)" respectively. Create two polygons <i>PHH</i> '<i>P</i> ' and <i>PVV</i> '<i>P</i> ' and label them with two colours with the value of opacity being 100. In "Graphics" window, create two check boxes, labelled with "Rotation about x-axis" and "Rotation about y-axis". Link the polygon <i>PVV</i> '<i>P</i> ', the points <i>V</i> and <i>V</i> ' to "Rotation about y-axis". 	

Step	Objects to be	Actions	
	created		
4.	The surface of revolution of the curve about <i>y</i> - axis	•	In "Graphics" window, create a slider α , as an angle with the interval settings as follow:
		•	By using the "Rotate around Line" i button, rotate the points <i>P</i> , <i>P</i> ' and the polygon <i>PHH</i> ' <i>P</i> ' around <i>y</i> -axis, with angle of rotation being α . Trace the image of <i>P</i> and <i>P</i> '.
		•	Create the surface of revolution by inputting "Surface[t*cos(θ), t*sin(θ), f(t), t, -20, 10, θ , 0, α]". Colour it with a similar colour to <i>PHH</i> ' <i>P</i> ' with the value of opacity being 25.
		•	Link all the objects created in this procedure to the checkbox "Rotation about <i>y</i> -axis".