[MAA 5.5-5.6] MONOTONY AND CONCAVITY

SOLUTIONS

Compiled by: Christos Nikolaidis

O. Practice questions

1. (a) $f^{\prime}(x)=3 x^{2}+1>0, f$ increasing (b) $f^{\prime}(x)=-25 x^{4} \leq 0, f$ decreasing
(c) $f^{\prime}(x)=-6 \mathrm{e}^{2 x}<0, f$ decreasing
(d) $f^{\prime}(x)=\frac{7}{(3 x+5)^{2}}>0, f$ increasing
2. (a) $f^{\prime}(x)=3 x^{2}+6 x-9$
$3 x^{2}+6 x-9=0 \Leftrightarrow x^{2}+2 x-3=0$
$x=-3(\max) \quad x=1(\mathrm{~min})$ (either by table of signs or by $2^{\text {nd }}$ derivative test)
(b) $f^{\prime \prime}(x)=6 x+6$
$6 x+6=0 \Leftrightarrow x=-1$
$x=-1$ (point of inflexion) (by table of signs)
(c) look at the GDC
3. (a) $f^{\prime}(x)=3 x^{2}+6 x+3$
$3 x^{2}+6 x+3=0 \Leftrightarrow x^{2}+2 x+1=0$
$x=-1$ neither max nor min (by table of signs)
(b) $f^{\prime \prime}(x)=6 x+6$
$6 x+6=0 \Leftrightarrow x=-1$
$x=-1$ (point of inflexion) (by table of signs)
So at $x=-1$, stationary point of inflexion
(c) look at the GDC
4. by using table of signs
$x=1(\max) x=3(\min) x=4$ (stationary point of inflexion),
5. by using table of signs
$x=1$ and $x=3$ are points of inflexion $(x=4$ is not)
6. (a)

Interval	g^{\prime}	$g^{\prime \prime}$
$a<x<b$	positive	positive
$b<x<\mathrm{c}$	positive	negative
$c<x<d$	negative	negative
$d<x<\mathrm{e}$	negative	positive
$e<x<f$	negative	negative

(b)

	Point	g^{\prime}	$g^{\prime \prime}$
B	$x=b$	positive	zero
C	$x=c$	zero	negative
D	$x=d$	negative	zero
E	$x=e$	zero	zero

7. $f(x)=a x^{3}+b x^{2}+c x$
(a) $f^{\prime}(x)=3 a x^{2}+2 b x+c, \quad f^{\prime \prime}(x)=6 a x+2 b$
(b) $\quad f(1)=4 \Leftrightarrow a+b+c=4$

$$
f^{\prime}(1)=0 \Leftrightarrow 3 a+2 b+c=0
$$

$$
f^{\prime \prime}(2)=0 \Leftrightarrow 12 a+2 b=0
$$

(c) $a=1, b=-6, c=9$
(d) $f^{\prime}(x)=3 a x^{2}+2 b x+c=0 \Leftrightarrow 3 x^{2}-12 x+9=0 \Leftrightarrow x^{2}-4 x+3=0 \Leftrightarrow x=1, x=3$ minimum at $x=3$ (by using table or $2^{\text {nd }}$ derivative test)
8. If $f:(x) \mapsto x^{2} \mathrm{e}^{x}$ then $f^{\prime}(x)=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}=x(x+2) \mathrm{e}^{x}$
stationary points : $x=0, x=-2$
Using table of signs: max at $x=-2$, min at $x=0$
$f^{\prime \prime}(x)=x^{2} \mathrm{e}^{x}+4 x \mathrm{e}^{x}+2 \mathrm{e}^{x}=\mathrm{e}^{x}\left(x^{2}+4 x+2\right)$
For a point of inflexion solve $f^{\prime \prime}(x)=0$
$x=-2-\sqrt{2}, x=-2+\sqrt{2}$
Using table of signs: point of inflexion at both points

A. Exam style questions (SHORT)

9. (a)

	A	B	E
$f^{\prime}(x)$	negative	0	negative

(b)

	A	C	E
$f^{\prime \prime}(x)$	positive	positive	negative

(c)

$f(0)$	$f^{\prime}(0)$	$f^{\prime \prime}(0)$
positive	positive	negative

(d) One point of inflexion
10. (a) $f^{\prime}(x)=x^{2}+4 x-5$
(b) $f^{\prime}(x)=0 \Leftrightarrow x=-5, x=1$
so $x=-5$
(c) $f^{\prime \prime}(x)=2 x+4,2 x+4=0$
$x=-2$
(d) $f^{\prime}(3)=16$
$y-12=16(x-3) \Rightarrow y=16 x-36$
OR $12=16 \times 3+b \Rightarrow b=-36$. Hence $y=16 x-36$
11. (a) $g^{\prime}(x)=3 x^{2}-6 x-9$
$3 x^{2}-6 x-9=0 \Leftrightarrow 3(x-3)(x+1)=0 \Leftrightarrow x=3 \quad x=-1$
(b) METHOD 1
$g^{\prime}(x<-1)$ is positive, $g^{\prime}(x>-1)$ is negative $g^{\prime}(x<3)$ is negative, $g^{\prime}(x>3)$ is positive
min when $x=3$, max when $x=-1$
METHOD 2
Evidence of using second derivative
$g^{\prime \prime}(x)=6 x-6$
$g^{\prime \prime}(3)=12$ (or positive), $g^{\prime \prime}(-1)=-12($ or negative $)$
min when $x=3$, max when $x=-1$
12. (a) $f^{\prime \prime}(x)=0$ OR the max and min of f^{\prime} gives the points of inflexion on f
$-0.114,0.364$
(b) METHOD 1
graph of g is a quadratic function, so it does not have any points of inflexion
METHOD 2
graph of g is concave down over entire domain therefore no change in concavity
METHOD 3
$g^{\prime \prime}(x)=-144$, therefore no points of inflexion as $g^{\prime \prime}(x) \neq 0$
13. (a) (i) $x=-\frac{5}{2} \quad$ (ii) $y=\frac{3}{2}$
(b) By quotient rule: $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(2 x+5)(3)-(3 x-2)(2)}{(2 x+5)^{2}}=\frac{19}{(2 x+5)^{2}}$
(c) There are no stationary points, since $\frac{\mathrm{d} y}{\mathrm{~d} x} \neq 0$ (or by the graph) (A1)
(d) There are no points of inflexion.
14. (a) $f^{\prime \prime}(x)=3(x-3)^{2}$
(b) $f^{\prime}(3)=0, f^{\prime \prime}(3)=0$
(c) $f^{\prime \prime}$ (i.e. concavity) does not change sign at P
15. (a) $f^{\prime}(x)=2 x \mathrm{e}^{-\mathrm{x}}-x^{2} \mathrm{e}^{-x}=(2-x) x \mathrm{e}^{-x}$
(b) Maximum occurs at $x=2$

Exact maximum value $=4 \mathrm{e}^{-2}$
(c) $f^{\prime \prime}(x)=2 \mathrm{e}^{-\mathrm{x}}+2 x \mathrm{e}^{-\mathrm{x}}-2 x \mathrm{e}^{-x}+x^{2} \mathrm{e}^{-x}=\left(x^{2}-4 x+2\right) e^{-x}$

For inflexion, $f^{\prime \prime}(x)=0$
$x=\frac{4+\sqrt{8}}{2}(=2+\sqrt{2})$
16.

Notes: On [-2,0], decreasing, concave up. On [0,1], increasing, concave up.
On [1,2], change of concavity, concave down.
17. (a) $g^{\prime}(x)=\frac{x^{2}\left(\frac{1}{x}\right)-2 x \ln x}{x^{4}}=\frac{x-2 x \ln x}{x^{4}}=\frac{x(1-2 \ln x)}{x^{4}}=: \frac{1-2 \ln x}{x^{3}}$
(b) $g^{\prime}(x)=0 \Leftrightarrow 1-2 \ln x=0 \Leftrightarrow \ln x=\frac{1}{2} \Leftrightarrow x=\mathrm{e}^{\frac{1}{2}}$
18. (a) $x=1$
(b) Using quotient rule

$$
\begin{aligned}
h^{\prime}(x) & =\frac{(x-1)^{2}(1)-(x-2)[2(x-1)]}{(x-1)^{4}} \\
& =\frac{(x-1)-(2 x-4)}{(x-1)^{3}}=\frac{3-x}{(x-1)^{3}}
\end{aligned}
$$

(c) at point of inflexion $g^{\prime \prime}(x)=0$
$x=4$
$y=\frac{2}{9}=0.222$ ie $\mathrm{P}\left(4, \frac{2}{9}\right)$
19. (a) $x=1$

EITHER The gradient of $g(x)$ goes from positive to negative OR when $x=1, g^{\prime \prime}(x)$ is negative
(b) $\quad-3<x<-2$ and $1<x<3$
$g^{\prime}(x)$ is negative
(c) $x=-\frac{1}{2}$
$g^{\prime \prime}(x)$ changes from positive to negative OR concavity changes
(d)

20. (a) $f^{\prime}(x)=\frac{\mathrm{e}^{x}\left(\mathrm{e}^{x}+1\right)-\mathrm{e}^{x}\left(\mathrm{e}^{x}-1\right)}{\left(\mathrm{e}^{x}+1\right)^{2}}=\frac{2 \mathrm{e}^{x}}{\left(\mathrm{e}^{x}+1\right)^{2}}>0$, it is increasing.
(b) since the function is increasing it is 1-1 (horizontal line test).

$$
\begin{aligned}
& \frac{\mathrm{e}^{x}-1}{\mathrm{e}^{x}+1}=y \Leftrightarrow \mathrm{e}^{x}-1=y \mathrm{e}^{x}+y \Leftrightarrow(1-y) \mathrm{e}^{x}=y+1 \Leftrightarrow \mathrm{e}^{x}=\frac{1+y}{1-y} \Leftrightarrow x=\ln \left(\frac{1+y}{1-y}\right) \\
& f^{-1}(x)=\ln \left(\frac{1+x}{1-x}\right)
\end{aligned}
$$

21. $f^{\prime}(x)=2(x-1)(x-4)^{3}+3(x-1)^{2}(x-4)^{2}=(x-1)(x-4)^{2}[2(x-4)+3(x-1)]$

$$
=(x-1)(x-4)^{2}(5 x-11)
$$

$$
f^{\prime}(x)=0 \Leftrightarrow x=1 \text { or } x=4 \text { or } x=11 / 5 \quad(=2.2)
$$

x	$\mathbf{1}$		$\mathbf{2 . 2}$			
f^{\prime}	+	-	+	+		
\max						\min

$$
\max \text { at } x=1, \min \text { at } x=2.2,
$$

$$
(x=4 \text { stationary })
$$

22. METHOD A

$$
\begin{aligned}
f^{\prime \prime}(x)= & (x-4)^{2}(5 x-11)+2(x-1)(x-4)(5 x-11)+5(x-1)(x-4)^{2} \\
& =(x-4)[(x-4)(5 x-11)+2(x-1)(5 x-11)+5(x-1)(x-4)] \\
& =(x-4)\left[5 x^{2}-31 x+44+10 x^{2}-32 x+22+5 x^{2}-25 x+20\right] \\
& =(x-4)\left(20 x^{2}-88 x+86\right)=2(x-4)\left(10 x^{2}-44 x+43\right)
\end{aligned}
$$

Or directly $f^{\prime \prime}(x)=0$
Roots $x=1.47, x=2.93, x=4$
They are all points of inflexion (by using a table of signs)
METHOD B
Use graph of $f^{\prime}(x)$ to find max/min
METHOD C
Use graph of $f^{\prime \prime}(x)$ to find roots and then table of signs
23. (a) $f^{\prime}(x)=2 x-\frac{p}{x^{2}}$
(b) $\quad f^{\prime}(-2)=0 \Leftrightarrow-4-\frac{p}{4}=0 \Leftrightarrow-\frac{p}{4}=4 \Leftrightarrow p=-16$
24.
(a) Use of quotient (or product) rule

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2\left(x^{2}+6\right)-(2 x \times 2 x)}{\left(x^{2}+6\right)^{2}} \quad 2 x(-1)\left(x^{2}+6\right)^{-2}(2 x)+2\left(x^{2}+6\right)^{-1} \\
& =\frac{12-2 x^{2}}{\left(x^{2}+6\right)^{2}}
\end{aligned}
$$

(b) Solving $f^{\prime}(x)=0$ for x
$x= \pm \sqrt{6}$
f has to be 1-1 for f^{-1} to exist and so the least value of b
is the larger of the two x-coordinates (accept a labelled sketch)
Hence $b=\sqrt{6}$
25.
(a) $\quad f^{\prime}(x)=1-\frac{2}{x^{\frac{1}{3}}}$

$$
\Rightarrow 1-\frac{2}{x^{\frac{1}{3}}}=0 \Rightarrow x^{\frac{1}{3}}=2 \Rightarrow x=8
$$

(b) $f^{\prime \prime}(x)=\frac{2}{3 x^{\frac{4}{3}}}$
$f^{\prime \prime}(8)>0 \Rightarrow$ at $x=8, f(x)$ has a minimum.
26. METHOD 1
$y=x e^{x} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=x \mathrm{e}^{x}+\mathrm{e}^{x}$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x \mathrm{e}^{x}+2 \mathrm{e}^{x}=\mathrm{e}^{x}(x+2)$
Therefore the x-coordinate of the point of inflexion is $x=-2$
METHOD 2
Sketching $y=f^{\prime}(x)$

$f^{\prime}(x)$ has a minimum when $x=-2$.
Thus, $f(x)$ has point of inflexion when $x=-2$
27. (a) Given $f(x)=\mathrm{e}^{\sin x}$

Then $f^{\prime}(x)=\cos x \times \mathrm{e}^{\sin x}$
(b) $f^{\prime \prime}(x)=\cos ^{2} x \times \mathrm{e}^{\sin x}-\sin x \times \mathrm{e}^{\sin x}=\mathrm{e}^{\sin x}\left(\cos ^{2} x-\sin x\right)$ For the point of inflexion,
$f^{\prime \prime}(x)=0 \Rightarrow \mathrm{e}^{\sin x}\left(\cos ^{2} x-\sin x\right)=0 \Rightarrow \cos ^{2} x-\sin x=0$
$\Rightarrow 1-\sin ^{2} x-\sin x=0 \Rightarrow \sin ^{2} x+\sin x-1=0$
$\sin x=\frac{-1 \pm \sqrt{5}}{2}$
But $\frac{-1-\sqrt{5}}{2}<-1$
Hence $\sin x=\frac{\sqrt{5}-1}{2}$
28.

EITHER

Using the graph of $y=f^{\prime}(x)$

The maximum of $f^{\prime}(x)$ occurs at $x=-0.5$. The zero of $f^{\prime \prime}(x)$ occurs at $x=-0.5$.

THEN
Note: Do not award this $A I$ for stating $x= \pm 0.5$ as the final answer for x.

$$
f(-0.5)=0.607\left(=\mathrm{e}^{-0.5}\right)
$$

EITHER

Correctly labelled graph of $f^{\prime}(x)$ for $x<0$ denoting the maximum $f^{\prime}(x)$
(e.g. $f^{\prime}(-0.6)=1.17$ and $f^{\prime}(-0.4)=1.16$ stated)

OR
Correctly labelled graph of $f^{\prime \prime}(x)$ for $x<0$ denoting the maximum $f^{\prime}(x)$
(e.g. $f^{\prime \prime}(-0.6)=0.857$ and $f^{\prime \prime}(-0.4)=-1.05$ stated)

OR
$f^{\prime}(0.5) \approx 1.21 . f^{\prime}(x)<1.21$ just to the left of $x=-\frac{1}{2}$
and $f^{\prime}(x)<1.21$ just to the right of $x=-\frac{1}{2}$
(e.g. $f^{\prime}(-0.6)=1.17$ and $f^{\prime}(-0.4)=1.16$ stated)

OR
$f^{\prime \prime}(x)>0$ just to the left of $x=-\frac{1}{2}$ and $f^{\prime \prime}(x)<0$ just to the right of $x=-\frac{1}{2}$
(e.g. $f^{\prime \prime}(-0.6)=0.857$ and $f^{\prime \prime}(-0.4)=-1.05$ stated $)$
29. $f^{\prime}(x)=4 x^{3}-\frac{2}{x^{2}}$
$f^{\prime \prime}(x)=12 x^{2}+\frac{4}{x^{3}}$
$f^{\prime \prime}(x)=0 \Rightarrow x=-\frac{1}{\sqrt[5]{3}}=-0.803$ and $y=-2.08($ accept -2.07$)$
The point of inflexion is $(-0.803,-2.08)\left(\operatorname{or}\left(-\frac{1}{\sqrt[5]{3}},-\frac{5}{3} \sqrt[5]{3}\right)\right)$
30.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2}-2 x-3
$$

at $\frac{\mathrm{d} y}{\mathrm{~d} x}=0,(x-3)(x+1)=0$
$x=3,-1 ; y=-5, \frac{17}{3}$
So $P(3,-5)$ and $Q\left(-1, \frac{17}{3}\right)$
Equation of (PQ) is $\frac{y+5}{\left(\frac{17}{3}+5\right)}=\frac{x-3}{-1-3}$

$$
\frac{3 y+15}{32}=\frac{x-3}{-4}
$$

$$
\frac{3 y+15}{8}=\frac{x-3}{-1}
$$

$$
-3 y-15=8 x-24
$$

$$
8 x+3 y-9=0
$$

31.

$$
\begin{aligned}
& f(x)=a x^{3}+b x^{2}+30 x+c \\
& f^{\prime}(x)=3 a x^{2}+2 b x+30, f^{\prime}(1)=0 \Rightarrow 3 a+2 b+30=0 \\
& f^{\prime \prime}(x)=6 a x+2 b, \quad f^{\prime \prime}(3)=0 \Rightarrow 18 a+2 b=0 \\
& a=2 \\
& b=-18 \\
& f(1)=7 \Rightarrow 2-18+30+c=7 \\
& \quad c=-7
\end{aligned}
$$

32. (a) $f(x)=2 x^{3}-6 x^{2}+5$
(b) \min at $(2,-3)$

B. Exam style questions (LONG)

33. (a) (i) $f^{\prime}(x)=\frac{\left(x \times \frac{1}{2 x} \times 2\right)-(\ln 2 x \times 1)}{x^{2}}=\frac{1-\ln 2 x}{x^{2}}$
(ii) $f^{\prime}(x)=0 \Leftrightarrow \frac{1-\ln 2 x}{x^{2}}=0$ only at 1 point, when $x=\frac{\mathrm{e}}{2}$
(iii) Maximum point when $f^{\prime}(x)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=0 \text { for } x=\frac{\mathrm{e}}{2}(=1.36) \\
& y=f\left(\frac{\mathrm{e}}{2}\right)=\frac{2}{\mathrm{e}}(=0.736)
\end{aligned}
$$

(b) $f^{\prime \prime}(x)=\frac{-\frac{1}{2 x} \times 2 \times x^{2}-(1-\ln 2 x) 2 x}{x^{4}}=\frac{2 \ln 2 x-3}{x^{3}}$

Inflexion point $\Rightarrow f^{\prime \prime}(x)=0 \Rightarrow 2 \ln 2 x=3 \Rightarrow x=\frac{\mathrm{e}^{1.5}}{2}(=2.24)$
34.
(a) $f^{\prime}(x)=(1+2 x) \mathrm{e}^{2 x}$
$f^{\prime}(x)=0$
$\Rightarrow(1+2 x) \mathrm{e}^{2 x}=0 \Rightarrow x=-\frac{1}{2}$
$f^{\prime \prime}(x)=\left(2^{2} x+2 \times 2^{2-1}\right) \mathrm{e}^{2 x}=(4 x+4) \mathrm{e}^{2 x}$
$f^{\prime \prime}\left(-\frac{1}{2}\right)=\frac{2}{\mathrm{e}}$
$\frac{2}{\mathrm{e}}>0 \Rightarrow$ at $x=-\frac{1}{2}, f(x)$ has a minimum.
$\mathrm{P}\left(-\frac{1}{2},-\frac{1}{2 \mathrm{e}}\right)$
(b) $\quad f^{\prime \prime}(x)=0 \Rightarrow 4 x+4=0 \Rightarrow x=-1$

Using the $2^{\text {nd }}$ derivative $f^{\prime \prime}\left(-\frac{1}{2}\right)=\frac{2}{\mathrm{e}}$ and $f^{\prime \prime}(-2)=-\frac{4}{\mathrm{e}^{4}}$,
the sign change indicates a point of inflexion.
(c) (i) $\quad f(x)$ is concave up for $x>-1$.
(ii) $\quad f(x)$ is concave down for $x<-1$.
(d)

35. (a) B, D
(b) (i) $f^{\prime}(x)=-2 x \mathrm{e}^{-x^{2}}$
(ii) product rule
$f^{\prime \prime}(x)=-2 \mathrm{e}^{-x^{2}}-2 x \times-2 x \mathrm{e}^{-x^{2}}=-2 \mathrm{e}^{-x^{2}}+4 x^{2} \mathrm{e}^{-x^{2}}=\left(4 x^{2}-2\right) \mathrm{e}^{-x^{2}}$
(c) $\quad f^{\prime \prime}(x)=0 \Leftrightarrow\left(4 x^{2}-2\right)=0$
$p=0.707\left(=\frac{1}{\sqrt{2}}\right), q=-0.707 \quad\left(=-\frac{1}{\sqrt{2}}\right)$
(d) checking sign of $f^{\prime \prime}$ on either side of POI sign change of $f^{\prime \prime}(x)$
36. (a) (i) Vertical asymptote $x=-1$ (ii) Horizontal asymptote $y=0$
(iii)

(b) (i) $\quad f^{\prime}(x)=\frac{-6 x^{2}}{\left(1+x^{3}\right)^{2}}$

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(1+x^{3}\right)^{2}(-12 x)+6 x^{2}(2)\left(1+x^{3}\right)^{1}\left(3 x^{2}\right)}{\left(1+x^{3}\right)^{4}} \\
& =\frac{\left(1+x^{3}\right)(-12 x)+36 x^{4}}{\left(1+x^{3}\right)^{3}}=\frac{-12-12 x^{4}+36 x^{4}}{\left(1+x^{3}\right)^{3}}=\frac{12 x\left(2 x^{3}-1\right)}{\left(1+x^{3}\right)^{3}}
\end{aligned}
$$

(ii) Point of inflexion $=>f^{\prime \prime}(x)=0 \Rightarrow x=0$ or $x=\sqrt[3]{\frac{1}{2}}$

$$
x=0 \text { or } x=0.794(3 \mathrm{sf})
$$

37. (a)

(b) (i) $\quad f^{\prime}(x)=2 \mathrm{e}^{-x}+(2 x+1)\left(-\mathrm{e}^{-x}\right)=(1-2 x) \mathrm{e}^{-x}$
(ii) $\operatorname{At} \mathbf{Q}, f^{\prime}(x)=0$

$$
x=0.5, y=2 \mathrm{e}^{-0.5} \quad \mathbf{Q} \text { is }\left(0.5,2 \mathrm{e}^{-0.5}\right)
$$

(c) $1 \leq k<2 \mathrm{e}^{-0.5}$
(d) $f^{\prime \prime}(x)=0 \Leftrightarrow \mathrm{e}^{-x}(-3+2 x)=0$

This equation has only one root. So f has only one point of inflexion.
38. (a) $x=1$
(b) $y=2$
(c) $f^{\prime}(x)=\frac{(x-1)^{2}(4 x-13)-2(x-1)\left(2 x^{2}-13 x+20\right)}{(x-1)^{4}}$

$$
=\frac{\left(4 x^{2}-17 x+13\right)-\left(4 x^{2}-26 x+40\right)}{(x-1)^{3}}=\frac{9 x-27}{(x-1)^{3}}
$$

(d) $f^{\prime}(3)=0 \quad \Rightarrow$ stationary point
$f^{\prime \prime}(3)=\frac{18}{16}>0 \Rightarrow$ minimum
(e) Point of inflexion $\Rightarrow f^{\prime \prime}(x)=0 \Rightarrow x=4$
$x=4 \Rightarrow y=0 \quad \Rightarrow$ Point of inflexion $=(4,0)$
39. (a) (i) $-1.15,1.15$
(ii) it occurs at P and Q (when $x=-1.15, x=1.15$)

$$
k=-1.13, k=1.13
$$

(b) product rule
$g^{\prime}(x)=x^{3} \times \frac{-2 x}{4-x^{2}}+\ln \left(4-x^{2}\right) \times 3 x^{2}=\frac{-2 x^{4}}{4-x^{2}}+3 x^{2} \ln \left(4-x^{2}\right)$
(c)

(d) $\quad w=2.69, w<0$
40.
(a) Using quotient rule

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{3} \times \frac{1}{x}-3 x^{2} \ln x}{x^{6}} \\
& =\frac{1-3 \ln x}{x^{4}} \\
f^{\prime \prime}(x) & =\frac{-\frac{3}{x} \times x^{4}-4 x^{3}(1-3 \ln x)}{x^{8}} \\
& =\frac{-7+12 \ln x}{x^{5}}
\end{aligned}
$$

(b) (i) For a maximum, $f^{\prime}(x)=0$ giving
$\ln x=\frac{1}{3}$
$x=\mathrm{e}^{\frac{1}{3}}$

EITHER

$f^{\prime \prime}\left(\mathrm{e}^{\frac{1}{3}}\right)=\frac{12 \times \frac{1}{3}-7}{\mathrm{e}^{\frac{5}{3}}}<0$
\therefore maximum
OR
for $x<\mathrm{e}^{\frac{1}{3}}, f^{\prime}(x)>0$
for $x>\mathrm{e}^{\frac{1}{3}}, f^{\prime}(x)<0$
\therefore maximum
(ii) $\quad f^{\prime \prime}(0)=0 \Rightarrow \ln (x)=\frac{7}{12}$
$x=\mathrm{e}^{\frac{7}{12}}(1.79)$
$f^{\prime \prime}(1.5)=-0.281$
$f^{\prime \prime}(2)=0.0412$
Note: Accept any two sensible values either side of 1.79 .
\therefore Change of sign \Rightarrow point of inflexion
(iii)

41. (a) $f^{\prime}(x)=3 x^{2}-4$
(b) $f^{\prime}(1)=-1$
$3 x^{2}-4=-1 \Leftrightarrow x= \pm 1$
at $\mathrm{Q}, x=-1, y=4(\mathrm{Q}$ is $(-1,4))$
(c) f is decreasing when $f^{\prime}(x)<0$
$p=-1.15, q=1.15 ;\left(\mathrm{OR} \pm \frac{2}{\sqrt{3}}\right)$
(d) $f^{\prime}(x) \geq-4, y \geq-4$, OR $[-4, \infty[$
(e) $f^{\prime \prime}(x)=6 x$
$6 x=0 \Leftrightarrow x=0$
The point of inflexion is $(0,1)$
42. (a) (i) coordinates of A are $(0,-2)$
(ii) $f(x)=3+20 \times\left(x^{2}-4\right)^{-1}$
$f^{\prime}(x)=20 \times(-1) \times\left(x^{2}-4\right)^{-2} \times(2 x)=-40 x\left(x^{2}-4\right)^{-2}$
OR $\frac{\left(x^{2}-4\right)(0)-(20)(2 x)}{\left(x^{2}-4\right)^{2}}$
substituting $x=0$ into $f^{\prime}(x)$ gives $f^{\prime}(x)=0$
(b) (i) $f^{\prime}(0)=0$ (stationary)
$f^{\prime \prime}(0)=\frac{40 \times 4}{(-4)^{3}}\left(=\frac{-5}{2}\right)$ negative
then the graph must have a local maximum
(ii) $f^{\prime \prime}(x)=0$ at point of inflexion,
but the second derivative is never 0 (the numerator is always positive)
(c) getting closer to the line $y=3$, horizontal asymptote at $y=3$
(d) $y \leq-2, y>3$
43. (a) $f^{\prime}(x)=\mathrm{e}^{x}\left(1-x^{2}\right)+\mathrm{e}^{x}(-2 x)=\mathrm{e}^{x}\left(1-2 x-x^{2}\right)$
(b) $y=0$
(c) at the local maximum or minimum point
$f^{\prime}(x)=0 \Leftrightarrow \mathrm{e}^{x}\left(1-2 x-x^{2}\right)=0 \Rightarrow 1-2 x-x^{2}=0$
$r=-2.41 s=0.414$ (OR directly by GDC graph)
(d) $f^{\prime}(0)=1 \Rightarrow$ gradient of the normal $=-1$
$y-1=-1(x-0) \Leftrightarrow x+y=1$
(e) (i) intersection points at $(0,1)$ and $(1,0)$
44. (a) $f^{\prime}(x)=x^{2}-2 x-3$
$x^{2}-2 x-3=0 \Leftrightarrow x=\frac{2 \pm \sqrt{16}}{2} \Leftrightarrow x=-1$ or $x=3$
$x=-1$ (ignore $x=3) \quad y=-\frac{1}{3}-1+3=\frac{5}{3}$
coordinates are $\left(-1, \frac{5}{3}\right)$
(b) (i) $\quad(-3,-9)$
(ii) $(1,-4)$
(iii) reflection gives $(3,9)$ stretch gives $\left(\frac{3}{2}, 9\right)$
45. (a) quotient rule
$f^{\prime}(x)=\frac{\sin x(-\sin x)-\cos x(\cos x)}{\sin ^{2} x}=\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}$
(b) METHOD 1
$f^{\prime}(x)=-(\sin x)^{-2}$
$f^{\prime \prime}(x)=2(\sin x)^{-3}(\cos x)\left(=\frac{2 \cos x}{\sin ^{3} x}\right)$

METHOD 2

quotient rule: $f^{\prime \prime}(x)=\frac{\sin ^{2} x \times 0-(-1) 2 \sin x \cos x}{\left(\sin ^{2} x\right)^{2}}=\frac{2 \sin x \cos x}{\left(\sin ^{2} x\right)^{2}}\left(=\frac{2 \cos x}{\sin ^{3} x}\right)$
(c) substituting $\frac{\pi}{2} \Rightarrow p=-1, q=0$
(d) second derivative is zero, second derivative changes sign
46. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x}(\cos x+\sin x)+\mathrm{e}^{x}(-\sin x+\cos x)=2 \mathrm{e}^{x} \cos x$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \Rightarrow 2 \mathrm{e}^{x} \cos x=0 \Rightarrow \cos x=0 \Rightarrow x=\frac{\pi}{2} \Rightarrow a=\frac{\pi}{2}$
$y=\mathrm{e}^{\frac{\pi}{2}}\left(\cos \frac{\pi}{2}+\sin \frac{\pi}{2}\right)=\mathrm{e}^{\frac{\pi}{2}} \Rightarrow b=\mathrm{e}^{\frac{\pi}{2}}$
(c) At D, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 \Rightarrow 2 \mathrm{e}^{x} \cos x-2 \mathrm{e}^{x} \sin x=0 \Rightarrow 2 \mathrm{e}^{x}(\cos x-\sin x)=0$

$$
\Rightarrow \cos x-\sin x=0 \Rightarrow x=\frac{\pi}{4}
$$

$$
y=\mathrm{e}^{\frac{\pi}{4}}\left(\cos \frac{\pi}{4}+\sin \frac{\pi}{4}\right)=\sqrt{2} \mathrm{e}^{\frac{\pi}{4}}
$$

47. (a) $y=0$
(b) $\quad f^{\prime}(x)=\frac{-2 x}{\left(1+x^{2}\right)^{2}}$
(c) $f^{\prime}(x)=-2 x\left(1+x^{2}\right)^{-2}$,
$f^{\prime \prime}(x)=-2\left(1+x^{2}\right)^{-2}+4 x\left(1+x^{2}\right)^{-3} 2 x=\frac{-2}{\left(1+x^{2}\right)^{2}}+\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}}$
$=\frac{-2\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{3}}+\frac{8 x^{2}}{\left(1+x^{2}\right)^{3}}=\frac{6 x^{2}-2}{\left(1+x^{2}\right)^{3}}$
(d) $f^{\prime \prime}(x)=0 \Leftrightarrow 6 x^{2}-2=0 \Leftrightarrow x= \pm \sqrt{\frac{1}{3}}$

The maximum gradient is at $x=\frac{-1}{\sqrt{3}}$
48. (a)

(b) $\quad x=\frac{1}{2}$ (must be an equation)
(c) $f^{\prime}(x)=2 \mathrm{e}^{2 x-1}-10(2 x-1)^{-2}$
(e) (i) $\quad x=1.11 \quad(\operatorname{accept}(1.11,7.49)) \quad$ (ii) $p=0, q=7.49(0 \leq k<7.49)$
49. (a) π
(b) (i) $f^{\prime}(x)=\mathrm{e}^{x} \cos x+\mathrm{e}^{x} \sin x=\mathrm{e}^{x}(\cos x+\sin x)$
(ii) At B, $f^{\prime}(x)=0$
(c) $f^{\prime \prime}(x)=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x=2 \mathrm{e}^{x} \cos x$
(d) (i) At A, $f^{\prime \prime}(x)=0$
(ii) $2 \mathrm{e}^{x} \cos x=0 \Leftrightarrow \cos x=0$

$$
x=\frac{\pi}{2}, y=\mathrm{e}^{\frac{\pi}{2}} \quad \text { Coordinates are }\left(\frac{\pi}{2}, \mathrm{e}^{\frac{\pi}{2}}\right)
$$

50. (a)
(i) $f^{\prime}(x)=\frac{(2 x-1)\left(x^{2}+x+1\right)-(2 x+1)\left(x^{2}-x+1\right)}{\left(x^{2}+x+1\right)^{2}}=\frac{2\left(x^{2}-1\right)}{\left(x^{2}+x+1\right)^{2}}$
(ii) $f^{\prime}(x)=0 \Rightarrow x= \pm 1$

$$
\mathrm{A}\left(1, \frac{1}{3}\right) \quad \mathrm{B}(-1,3) \quad\left(\text { or } \mathrm{A}(-1,3) \mathrm{B}\left(1, \frac{1}{3}\right)\right)
$$

(b) (i)

(ii) The points of inflexion can be found by locating the max/min on the graph of f. This gives $x=-1.53,-0.347,1.88$.
OR

$$
f^{\prime \prime}(x)=\frac{-4\left(x^{3}-3 x-1\right)}{\left(x^{2}+x+1\right)^{3}} \quad f^{\prime \prime}(x)=0 \Rightarrow x^{3}-3 x-1=0 \Rightarrow x=1.53,-0.347,1.88
$$

(c) The graph of $y=f(x)$ helps:

(i) Range of f is $\left[\frac{1}{3}, 3\right]$.
(ii) We require the image set of $\left[\frac{1}{3}, 3\right]$.

$$
\begin{aligned}
& f\left(\frac{1}{3}\right)=\frac{\frac{1}{9}-\frac{1}{3}+1}{\frac{1}{9}+\frac{1}{3}+1}=\frac{7}{13}, f(3)=\frac{9-3+1}{9+3+1}=\frac{7}{13} \\
& \text { Range of } g \text { is }\left[\frac{1}{3}, \frac{7}{13}\right] .
\end{aligned}
$$

51. (a) $y=\mathrm{e}^{2 x} \cos x$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{2 x}(-\sin x)+\cos x\left(2 \mathrm{e}^{2 x}\right)=\mathrm{e}^{2 x}(2 \cos x-\sin x)
$$

(b) $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=2 \mathrm{e}^{2 x}(2 \cos x-\sin x)+\mathrm{e}^{2 x}(-2 \sin x-\cos x)$

$$
=\mathrm{e}^{2 x}(4 \cos x-2 \sin x-2 \sin x-\cos x)=\mathrm{e}^{2 x}(3 \cos x-4 \sin x)
$$

(c) (i) At P, $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0 \Rightarrow 3 \cos x=4 \sin x \Rightarrow \tan x=\frac{3}{4}$

At $\mathrm{P}, x=a, \tan a=\frac{3}{4}$
(ii) The gradient at any point is $\mathrm{e}^{2 x}(2 \cos x-\sin x)$

Therefore, the gradient at $\mathrm{P}=\mathrm{e}^{2 a}(2 \cos a-\sin a)$
When $\tan a=\frac{3}{4}$, by using a right angle triangle:

$$
\cos a=\frac{4}{5}, \sin a=\frac{3}{5}
$$

(by drawing a right triangle, or by calculator)
Therefore, the gradient at $\mathrm{P}=\mathrm{e}^{2 a}\left(\frac{8}{5}-\frac{3}{5}\right)=\mathrm{e}^{2 a}$
52. (a) $f(x)=x\left(\sqrt[3]{\left(x^{2}-1\right)^{2}}\right)$

Notes: (sharp points) at $x= \pm 1$. zeros at $x= \pm 1$ and $x=0$. maximum at $x=-1$ and minimum at $x=1$.
max at approx. $x=0.65$, and min at approx. $x=-0.65$. There are no asymptotes.
(b) (i) Let

$$
\begin{aligned}
& f(x)=x\left(x^{2}-1\right)^{\frac{2}{3}} \\
& f^{\prime}(x)=\frac{4}{3} x^{2}\left(x^{2}-1\right)^{-\frac{1}{3}}+\left(x^{2}-1\right)^{\frac{2}{3}} \\
& f^{\prime}(x)=\left(x^{2}-1\right)^{-\frac{1}{3}}\left[\frac{4}{3} x^{2}+\left(x^{2}-1\right)\right] \\
& f^{\prime}(x)=\left(x^{2}-1\right)^{-\frac{1}{3}}\left(\frac{7}{3} x^{2}-1\right)(\text { or equivalent }) \\
& f^{\prime}(x)=\frac{7 x^{2}-3}{3\left(x^{2}-1\right)^{--\frac{1}{3}}}(\text { or equivalent })
\end{aligned}
$$

The domain is $-1.4 \leq x \leq 1.4, x \neq \pm 1$ (accept $-1.4<x<1.4, x \neq \pm 1$)
(ii) For the maximum or minimum points let $f^{\prime}(x)=0$
i.e. $\left(7 x^{2}-3\right)=0$ or use the graph.

Therefore, the x-coordinate of the maximum point is
$x=\sqrt{\frac{3}{7}}$ (or 0.655) and
the x-coordinate of the minimum point is $x=\sqrt{\frac{3}{7}}$ (or -0.655).
(c) The x-coordinate of the point of inflexion is $x= \pm 1.1339$

OR
$f^{\prime \prime}(x)=\frac{4 x\left(7 x^{2}-9\right)}{9 \sqrt[3]{\left(x^{2}-1\right)^{4}}}, x \neq \pm 1$
For the points of inflexion let $f^{\prime \prime}(x)=0$ and use the graph,
i.e. $x=\sqrt{\frac{9}{7}}=1.1339$.

