Secondary Education Examination Model Question - 2078 Grade: 12

 Time: 3 hrs
 Mathematics (Mat. 402)
 F.M.: 75

Candidates are required to give their answer in their own words as far as practicable. The figures in the margin indicate full marks.

Attempt All Questions.

Group 'A' $[11 \times 1 = 11]$

Rewrite the correct option in your answer sheet.

- 1. If ω is a complex cube root of unity, then the value of $(1 + \omega \omega^2)(1 \omega + \omega^2)$ is A. ω B. ω^2 C. $1 + \omega$ D. 4
- 2. An equation $(m+2)x^2 2(m+4)x + (m+7) = 0$ have equal roots. The value of m is A. 2 B. -2 C. 7 D. -4
- 3. Solution of $\sin\left(2\sin^{-1}\frac{4}{5}\right)$ is A. $\frac{4}{5}$ B. $\frac{24}{25}$ C. $\frac{25}{24}$ D. 1
- 4. If $\cos mx = \cos nx$, then the value os x is

A.
$$2n\pi$$

B. $2n\pi \pm \frac{\pi}{3}$
C. $(4k-1)\frac{\pi}{2(m\pm n)}, k = 0, \pm 1, \pm 2, ...$
D. $\frac{2k\pi}{m\pm n}, k = 0, \pm 1, \pm 2, ...$

5. The area of a parallelogram whose diagonals are the vectors $\vec{i} - 2\vec{k}$ and $4\vec{i} + 3\vec{j} + \vec{k}$ is

A.
$$5\sqrt{14}$$
 sq. units B. $\frac{3}{2}$ sq. units C. $\frac{3}{2}\sqrt{14}$ sq. units D. $\sqrt{14}$ sq. units

6. The equation of a hyperbola in standard position satisfying transverse and conjugate axes are respectively 4 and 5 is

A.
$$\frac{x^2}{4} - \frac{4y^2}{25} = 1$$
 B. $4x^2 - 7y^2 = 36$
C. $4x^2 + 7y^2 = 36$ D. $\frac{x^2}{4} - \frac{y^2}{5} = 1$

7. Four unbiased coins are tossed successively. The mean and variance of the distribution differed by

A. 1 B. 2 C. 3 D. 4

8. The points on the curve $x^2 + y^2 - 2x - 3 = 0$ where the tangents are parallel to the X- axis are

A. (1,2), (1,-2) B. (1,2), (1,2)C. (-1,2), (1,-2) D. (1,2), (1,3)

- 9. he order and degree of the differential equation $\left(\frac{dy}{dx}\right)^3 + 2y\left(\frac{d^2y}{dx^2}\right) = 0$ is A. 2,1 B. 1,2 C. 1,3 D. 3,1
- 10. When Gauss forward elimination method is used for solving the equations

$$3x + 4y = 18....(i)$$
$$3y - x = 7....(ii)$$

we apply the operation A. $eq^n(i) + 4eqn(ii)$ B. $eq^n(i) + 3eq^n(ii)$ C. $eq^n(i) + eq^n(ii)$ D. $eq^n(ii) + 3eq^n(i)$

11. If the resultant of two like parallel forces acting at a distance of 3 m is 80 N at a distance of 75 cm from one of the forces, then the force is

A. 20 N B. 9.8 N C. 60 N D. 40 N

OR

A. 9 or 10 B. 1 or 10 C. 1 or 9 D. 4 or 5

Group 'B'

12. (a) If the numerical coefficients in the second, third and fourth terms of the expansion of (x + a)ⁿ are 30, 375 and 2500 respectively, find the value of n. Let a, b, c and x be elements of a group G.

b) Solve for
$$x: x^2 = a^2$$
 and $x^5 = e$. [2]

- 13. (a) If $Z = \cos \theta + i \sin \theta$, find the value of $z^n + \frac{1}{z^n}$ by using De Moivre's Theorem. [2]
 - (b) Solve the system of equations by the row equivalent method: x + y + z = 6, x - y + z = 2 and x + y - z = 0. [3]
- 14. (a) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, then show that: x + y + z = xyz. [3]
 - (b) Find the eccentricity and the foci of the ellipse $\frac{x^2}{9} + \frac{y^2}{16} = 1$. [2]
- 15. From the following data

Age in years (X)	5	15	30	45	50	60
Weight in kg (Y)	10	35	50	65	55	45

compute the

- (a) correlation coefficient by Karl Pearson's method. [2]
- (b) line of regression for estimating X on Y and estimate the most probable age of the weight 37 kg. [2]
- 16. Evaluate:

(a)
$$\int \frac{dx}{3 - 2x - x^2}$$
 [2]

(b)
$$\int \frac{x^2}{(x^2+9)(x^2+4)} dx$$
 [3]

- 17. Solve $\frac{dy}{dx} + \frac{\cos x \sin y}{\cos y} = 0$. An equation reacting to the stability of an aeroplane is $\frac{dy}{dt} = g \cos \alpha kv$, where v is the velocity and g, α, k are constants. Find the expression for velocity, if v = 0, when t = 0. [5]
- 18. Maximize P = 25x + 45y subject to $x + 3y \le 21, 2x + 3y \le 24, x, y \ge 0$ by using simplex method. [5]

- 19. (a) Two unlike parallel forces, the greater of which is 75N, have a resultant 25N. Find the ratio of the distances of the resultant from the component forces. [2]
 - (b) A projectile thrown from a point in a horizontal plane comes back to the plane in 4 sec. at a distance of 60 m in front of the point of projection. Find the velocity of projection. $(g = 10m/s^2)$. [3]

OR

State the Hawkins-Simon conditions for the viability of the system. The demand and supply curves for an item are given by $P_d = 20 - 3Q - Q^2$ and $P_s = Q - 1$ respectively. Find the difference between consumer and producer surplus at the equilibrium price. [1 + 4]

Group 'C'
$$[3 \times 8 = 24]$$

- 20. (a) In how many ways can the letters of the word "CALCULUS" be arranged so that the two L's do not come together? [3]
 - (b) Sum to n terms of the series $1^2 + 3^2 + 5^2 + ...$ [3]
 - (c) The sum of the roots of a quadratic equation is 4 and the sum of their squares is 14. Find the equation. [2]
- 21. (a) Find the angle between the lines whose direction cosines are given by l + m + n = 0 and 2lm + 2ln mn = 0. [5]
 - (b) Prove by the vector method: $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$ [3]
- 22. (a) Find the derivative of $\ln \sin x$ by using first principle. [4]
 - (b) State the mean value theorem. Use it to verify for the function $f(x) = \sqrt{x^2 4}$ in [2,4]. [1+3]
 - *Ambik*