INTERNATIONAL BACCALAUREATE # Mathematics: analysis and approaches # MAA # EXERCISES [MAA 2.1] LINES Compiled by Christos Nikolaidis | Ο. | Pract | iice questions | | |----|--|--|-----| | 1. | [Max | kimum mark: 8] <i>[without GDC]</i> | | | | Consider the points $A(2,7)$, $B(5,11)$ | | | | | (a) | Find the gradient of the line (AB). | [2] | | | (b) | Write down the gradient of a perpendicular line to (AB). | [1] | | | (c) | Let M be the midpoint of the line segment [AB]. Find the coordinates of M. | [1] | | | (d) | Find the distance between A and B (i.e. the length AB). | [2] | | | (e) | Find the coordinates of the point C if B is the midpoint of the line segment [AC]. | [2] | 2. | [Max | kimum mark: 8] [without GDC] | | |----|------|---|-----| | | Cons | sider the points A(3,5), B(a ,1) and C(7, -3) where $a \in R$. Find the values of a in | | | | each | of the following cases: | | | | (a) | If the gradient of the line (AB) is 2. | [2] | | | (b) | If the midpoint of the line segment [AB] is $M(7,3)$. | [2] | | | (c) | If B is the midpoint of the line segment [AC]. | [1] | | | (d) | If the distance between A and B is 5. | [3] | 3. [Maximum mark: 9] [without GDC] Consider the line L given by y = 2x + 4 (a) Write down [3] - (b) Draw the line on the diagram below. [3] - (c) Check if the points A(7,19) and B(8,20) lie on the line. [3] | 4. [Maximum mark: 7] / | without GDC] | |--------------------------------------|--------------| |--------------------------------------|--------------| Find the equation of the line passing through A(3,4) and B(5,7) - (a) in the gradient-point form $y y_1 = m(x x_1)$ [3] - (b) in the gradient-intercept form y = mx + c. [2] - (c) in the form ax + by = d, where a, b, d are integers. [2] |
 | | | |------|------|------| | | | | |
 |
 | | | | | | |
 |
 | | | | | | |
 |
 | | | | | | |
 |
 | | | | | | |
 |
 |
 | | | | | |
 |
 |
 | | | | | |
 |
 |
 | | | | | |
 |
 |
 | | | | | | | | | #### **5.** [Maximum mark: 6] *[without GDC]* The diagram below shows the line with equation 3x + 2y = 18. The points A and B are the y and x-intercepts respectively. M is the midpoint of [AB]. Find the coordinates of (i) the point A; (ii) the point B; (iii) the point M. |
 |
 |
 | |------|------|------| |
 |
 |
 | | | | | |
 |
 |
 | | [IVIa | ximum mark: 5] | [without GDC] | | |------------|---|--|-------------------| | (a) | Find the equation | n of the line passing though the points $A(2,-5)$ and $B(2,8)$. | [2] | | (b) | Find the equation | n of the line passing though the points $C(6,5)$ and $D(-3,5)$. | [2] | | (c) | Find the point of | intersection P between the lines L_1 and L_2 | [1] | _ | ximum mark: 6] | | | | (a) | Find the equation | n of the line which is parallel to x -axis and passes through A(2,3) | | | (a)
(b) | Find the equation | n of the line which is parallel to y -axis and passes through A(2,3) | [2] | | (a) | Find the equation Find the equation Find the equation | n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation Find the equation | n of the line which is parallel to y -axis and passes through A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation | n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2]
[2]
[2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | | (a)
(b) | Find the equation Find the equation | n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3) | [2] | **8.** [Maximum mark: 9] **[without GDC]**Consider the line *L* on the diagram below - (a) Write down - (i) the gradient of the line (- (ii) the *y*-intercept - (iii) the x-intercept - [3] [2] [2] - (b) Write down the equation of the line in the gradient-intercept form y = mx + c - (c) Given that P(1, y) and Q(x, 1) lie on the line write down the values of x and y. [2] - (d) Given that A(a,-5) and B(-5,b) lie on the line find the values of a and b. |
 |
 | | |------|------|--| |
 |
 | | |
 | ••••• | |------|-------| | | | |
 | | #### A. Exam style questions (SHORT) 9. [Maximum mark: 8] **[without GDC]**Consider the line L with equation y + 2x = 3. The line L_1 is parallel to L and passes through the point (6, -4). (a) Find the gradient of L_1 . [1] (b) Find the equation of L_1 in the form y = mx + b. [3] (c) Find the x-coordinate of the point where line L_1 crosses the x-axis. [2] (d) Draw the two lines on the diagram below. [2] | 0. | [Max | kimum mark: 9] <i>[without GDC]</i> | | | |----|------|---|-----|--| | | Con | sider the points A(2,5) and B(3,8). The line L_1 passes through A and B. | | | | | (a) | Find | | | | | | (i) the gradient of the line L_1 (ii) the equation of the line L_1 . | [3] | | | | (b) | Find the line L_2 which is perpendicular to L_1 and passes through the point A. | [2] | | | | (c) | Express both equations of L_1 and L_2 in the form $ax+by=c$, where a,b,c are | | | | | | integers. | [2] | | | | (d) | Write down the solution of the two simultaneous equations found in (d) and make | | | | | | a comment about the solution by sketching the two lines L_1 , L_2 . | [2] | | | | | [it is not necessary to draw the lines on the Cartesian plane] | 11. | [Max | kimum mark: 7] | | |-----|------|---|-----| | | Cons | sider the points $A(-2,5)$ and $B(4,9)$. | | | | (a) | Find the gradient of the line L passing through ${\bf A}$ and ${\bf B}$. | [2] | | | (b) | Find the coordinates of the midpoint \boldsymbol{M} between \boldsymbol{A} and \boldsymbol{B} . | [1] | | | (c) | Find the equation of the line which is perpendicular to \boldsymbol{L} and passes through the | | | | | point \mathbf{M} . (i.e. the perpendicular bisector of the line segment [AB]) | [2] | | | (d) | Find the distance between the points A and M. | [2] | # **12.** [Maximum mark: 7] *[without GDC]* (b) The points A(2,1) and B(6,3) are shown in the diagram below. Let L, be the **perpendicular bisector** of the line segment [AB] | (a) | Find the equation of L . | [5] | |-----|----------------------------|-----| |-----|----------------------------|-----| | Write down the y -intercept of L and draw an accurate line for L on the diagram | | |---|-----| | above. | [2] | 13*. | [Maximum mark: 7] [with GDC] | |------|---| | | Find the perpendicular bisector of the line segment [AB] with A(8,13) and B(20,41), in | | | the form $ax + by = d$, where a,b,d are positive integers. | 4 **. | [Maximur | m mark: 6] | [with / witho | ut GDC] | | | |--------------|------------|----------------|--|-----------------------|--------------------------|--------------------| | | Find the | coordinates | of a point P or | 1 L_1 : $y = x + 1$ | given that the di | stance between the | | | origin and | d P is 5. | ••••• | 5**. | [Maximur | n mark: 6] | [without GD | CJ | | | | | | | | | | | | | Find the | coordinates o | of a point A on <i>I</i> | y = x + 1 a | nd a point B on <i>L</i> | y = 2x + 1, | | | | | of a point A on <i>I</i>
nidpoint of the li | | | y = 2x + 1, | | | | | | | | y = 2x + 1, | | | | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | y = 2x + 1, | | | | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | | | so that M | (5,8) is the m | idpoint of the li | ne segment [A | AB]. | | ### **16**.** [Maximum mark: 6] [without GDC] The following diagram shows the lines x-2y-4=0, x+y=5 and the point P(1, 1). A line is drawn from P to intersect with x-2y-4=0 at Q, and with x+y=5 at R, so that P is the midpoint of [QR]. Find the exact coordinates of Q and of R. |
 | |------| |
 |
 | | | # B. Exam style questions (LONG) | 17*. | 7*. [Maximum mark: 10] <i>[without GDC]</i> | | | | | | | |------|---|---|---|--|--|--|--| | | Let A | $A(3k,4k)$ be a point of the line L with equation $y = \frac{4}{3}x$, where k is an integer. | e <i>L</i> with equation $y = \frac{4}{3}x$, where <i>k</i> is an integer. | | | | | | | (a) | Verify that the point A lies on the line L . | [2] | | | | | | | (b) | Find the possible values of k if the distance between the origin and A equals 10 . | [4] | | | | | | | (c) | Write down the coordinates of the two points on the line \boldsymbol{L} whose distance from | | | | | | | | | the origin is equal to 10. | | | | | | | | (d) | Demonstrate on the diagram below the result of question (c). | 18. [Maximum mark: 13] [with / without GDC] | | | | | | | | |--|--|---|-----|--|--|--|--| | Consider the line L_1 with equation $y = 2x - 3$. | | | | | | | | | | The line L_2 is parallel to L_1 and passes through the point A(1,9). | | | | | | | | | The line L_3 is perpendicular to L_1 and passes through the point A(1,9). | | | | | | | | | (a) | Find the equation (i) of the line L_2 . (ii) of the line L_3 . | [6] | | | | | | | The | The lines L_1 and L_3 intersect at point B | | | | | | | | Find the coordinates of point B. | [2] | | | | | | | | (d) | Find the distance between the points A and B. | [2] | | | | | | | (d) | Sketch a diagram and deduce the distance from the point A to the line L_l . | [3] | | | | | | | | [it is not necessary to draw the lines on the Cartesian plane] | #### **19.** [Maximum mark: 23] The points A(3,2), B(7,2) and C(3,8) are shown in the diagram below. - (a) Find the equation of the perpendicular bisector of line segment [AB]. [2] - (b) Find the equation of the perpendicular bisector of line segment [AC]. [2] - (c) Write down the coordinates of the point of intersection P of the two bisectors and show that P is the midpoint of the line segment [BC]. [3] - (d) Find the areas of the triangles - (i) ABC. (ii) ABP (iii) ACP [6] - (e) Find the equation of the perpendicular bisector L of the line segment [BC] in the form ax + by + d = 0 with $a, b, c \in Z$. [5] - (f) Show that the line L does not pass through A. [2] - (g) Draw the three perpendicular bisectors of the sides of ABC on the diagram above. [3] # [MAA 2.1] LINES #### 20* [Maximum mark: 10] [with / without GDC] The following three lines l_1 , l_2 , and l_3 are defined with equations $$l_1: x + y = 5,$$ $l_2: x - 2y = 8,$ $l_3: x = -2$ and are shown in the figure below. - (a) Find the coordinates of the common point A between the lines l_1 and l_2 . [2] - (b) Write down the coordinates of - (i) the common point B between the lines l_1 and l_3 - (ii) the common point C between the lines l_2 and l_3 . [4] - (c) **Hence**, find the area of the triangle ABC. [4] |
 |
 | | |------|------|--| |
 |
 | | |
 |
 | | | | | |