INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

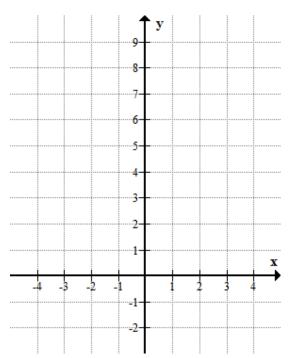
EXERCISES [MAA 2.1] LINES

Compiled by Christos Nikolaidis

Ο.	Pract	iice questions	
1.	[Max	kimum mark: 8] <i>[without GDC]</i>	
	Consider the points $A(2,7)$, $B(5,11)$		
	(a)	Find the gradient of the line (AB).	[2]
	(b)	Write down the gradient of a perpendicular line to (AB).	[1]
	(c)	Let M be the midpoint of the line segment [AB]. Find the coordinates of M.	[1]
	(d)	Find the distance between A and B (i.e. the length AB).	[2]
	(e)	Find the coordinates of the point C if B is the midpoint of the line segment [AC].	[2]

2.	[Max	kimum mark: 8] [without GDC]	
	Cons	sider the points A(3,5), B(a ,1) and C(7, -3) where $a \in R$. Find the values of a in	
	each	of the following cases:	
	(a)	If the gradient of the line (AB) is 2.	[2]
	(b)	If the midpoint of the line segment [AB] is $M(7,3)$.	[2]
	(c)	If B is the midpoint of the line segment [AC].	[1]
	(d)	If the distance between A and B is 5.	[3]

3. [Maximum mark: 9] [without GDC]

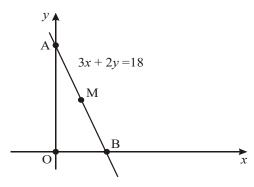

Consider the line L given by y = 2x + 4

(a) Write down

[3]

- (b) Draw the line on the diagram below. [3]
- (c) Check if the points A(7,19) and B(8,20) lie on the line. [3]

4. [Maximum mark: 7] /	without GDC]
--------------------------------------	--------------


Find the equation of the line passing through A(3,4) and B(5,7)

- (a) in the gradient-point form $y y_1 = m(x x_1)$ [3]
- (b) in the gradient-intercept form y = mx + c. [2]
- (c) in the form ax + by = d, where a, b, d are integers. [2]

5. [Maximum mark: 6] *[without GDC]*

The diagram below shows the line with equation 3x + 2y = 18. The points A and B are the y and x-intercepts respectively. M is the midpoint of [AB].

Find the coordinates of (i) the point A; (ii) the point B; (iii) the point M.

[IVIa	ximum mark: 5]	[without GDC]	
(a)	Find the equation	n of the line passing though the points $A(2,-5)$ and $B(2,8)$.	[2]
(b)	Find the equation	n of the line passing though the points $C(6,5)$ and $D(-3,5)$.	[2]
(c)	Find the point of	intersection P between the lines L_1 and L_2	[1]
_	ximum mark: 6]		
(a)	Find the equation	n of the line which is parallel to x -axis and passes through A(2,3)	
(a) (b)	Find the equation	n of the line which is parallel to y -axis and passes through A(2,3)	[2]
(a)	Find the equation Find the equation Find the equation	n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation Find the equation Find the equation	n of the line which is parallel to y -axis and passes through A(2,3)	[2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation	n of the line which is parallel to y -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2] [2] [2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]
(a) (b)	Find the equation Find the equation	n of the line which is parallel to <i>y</i> -axis and passes through A(2,3) n of the line passing though the origin and A(2,3)	[2]

8. [Maximum mark: 9] **[without GDC]**Consider the line *L* on the diagram below

- (a) Write down
 - (i) the gradient of the line (
- (ii) the *y*-intercept
- (iii) the x-intercept
- [3] [2]

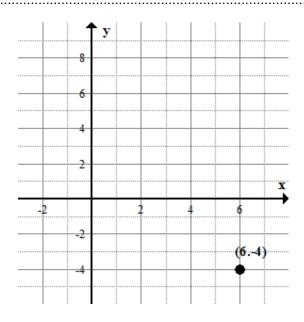
[2]

- (b) Write down the equation of the line in the gradient-intercept form y = mx + c
- (c) Given that P(1, y) and Q(x, 1) lie on the line write down the values of x and y. [2]
- (d) Given that A(a,-5) and B(-5,b) lie on the line find the values of a and b.

 	•••••

A. Exam style questions (SHORT)

9. [Maximum mark: 8] **[without GDC]**Consider the line L with equation y + 2x = 3. The line L_1 is parallel to L and passes through the point (6, -4).

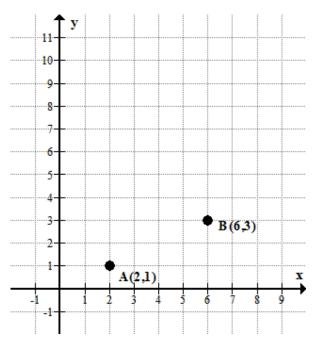

(a) Find the gradient of L_1 . [1]

(b) Find the equation of L_1 in the form y = mx + b. [3]

(c) Find the x-coordinate of the point where line L_1 crosses the x-axis. [2]

(d) Draw the two lines on the diagram below. [2]

.....


0.	[Max	kimum mark: 9] <i>[without GDC]</i>		
	Con	sider the points A(2,5) and B(3,8). The line L_1 passes through A and B.		
	(a)	Find		
		(i) the gradient of the line L_1 (ii) the equation of the line L_1 .	[3]	
	(b)	Find the line L_2 which is perpendicular to L_1 and passes through the point A.	[2]	
	(c)	Express both equations of L_1 and L_2 in the form $ax+by=c$, where a,b,c are		
		integers.	[2]	
	(d)	Write down the solution of the two simultaneous equations found in (d) and make		
		a comment about the solution by sketching the two lines L_1 , L_2 .	[2]	
		[it is not necessary to draw the lines on the Cartesian plane]		

11.	[Max	kimum mark: 7]	
	Cons	sider the points $A(-2,5)$ and $B(4,9)$.	
	(a)	Find the gradient of the line L passing through ${\bf A}$ and ${\bf B}$.	[2]
	(b)	Find the coordinates of the midpoint \boldsymbol{M} between \boldsymbol{A} and \boldsymbol{B} .	[1]
	(c)	Find the equation of the line which is perpendicular to \boldsymbol{L} and passes through the	
		point \mathbf{M} . (i.e. the perpendicular bisector of the line segment [AB])	[2]
	(d)	Find the distance between the points A and M.	[2]

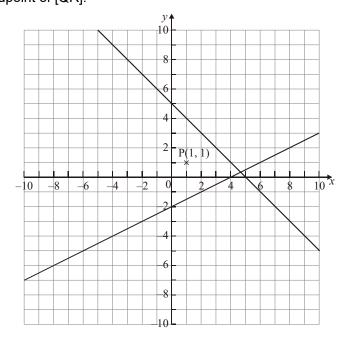
12. [Maximum mark: 7] *[without GDC]*

(b)

The points A(2,1) and B(6,3) are shown in the diagram below.

Let L, be the **perpendicular bisector** of the line segment [AB]

(a)	Find the equation of L .	[5]
-----	----------------------------	-----


Write down the y -intercept of L and draw an accurate line for L on the diagram	
above.	[2]

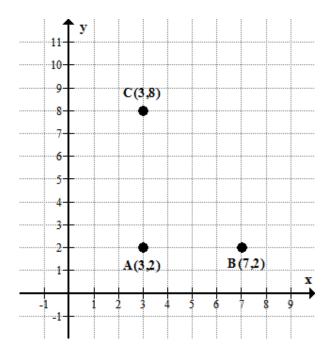
13*.	[Maximum mark: 7] [with GDC]
	Find the perpendicular bisector of the line segment [AB] with A(8,13) and B(20,41), in
	the form $ax + by = d$, where a,b,d are positive integers.

4 **.	[Maximur	m mark: 6]	[with / witho	ut GDC]		
	Find the	coordinates	of a point P or	1 L_1 : $y = x + 1$	given that the di	stance between the
	origin and	d P is 5.				
						•••••
5**.	[Maximur	n mark: 6]	[without GD	CJ		
	Find the	coordinates o	of a point A on <i>I</i>	y = x + 1 a	nd a point B on <i>L</i>	y = 2x + 1,
			of a point A on <i>I</i> nidpoint of the li			y = 2x + 1,
						y = 2x + 1,
		(5,8) is the m	idpoint of the li	ne segment [A	AB].	
		(5,8) is the m	idpoint of the li	ne segment [A	AB].	y = 2x + 1,
		(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	
	so that M	(5,8) is the m	idpoint of the li	ne segment [A	AB].	

16.** [Maximum mark: 6] [without GDC]

The following diagram shows the lines x-2y-4=0, x+y=5 and the point P(1, 1). A line is drawn from P to intersect with x-2y-4=0 at Q, and with x+y=5 at R, so that P is the midpoint of [QR].

Find the exact coordinates of Q and of R.


B. Exam style questions (LONG)

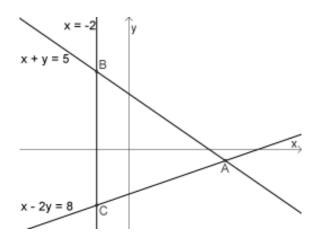
17*.	7*. [Maximum mark: 10] <i>[without GDC]</i>						
	Let A	$A(3k,4k)$ be a point of the line L with equation $y = \frac{4}{3}x$, where k is an integer.	e <i>L</i> with equation $y = \frac{4}{3}x$, where <i>k</i> is an integer.				
	(a)	Verify that the point A lies on the line L .	[2]				
	(b)	Find the possible values of k if the distance between the origin and A equals 10 .	[4]				
	(c)	Write down the coordinates of the two points on the line \boldsymbol{L} whose distance from					
		the origin is equal to 10.					
	(d)	Demonstrate on the diagram below the result of question (c).					

18. [Maximum mark: 13] [with / without GDC]							
Consider the line L_1 with equation $y = 2x - 3$.							
	The line L_2 is parallel to L_1 and passes through the point A(1,9).						
	The line L_3 is perpendicular to L_1 and passes through the point A(1,9).						
	(a)	Find the equation (i) of the line L_2 . (ii) of the line L_3 .	[6]				
	The	The lines L_1 and L_3 intersect at point B					
	Find the coordinates of point B.	[2]					
	(d)	Find the distance between the points A and B.	[2]				
	(d)	Sketch a diagram and deduce the distance from the point A to the line L_l .	[3]				
		[it is not necessary to draw the lines on the Cartesian plane]					

19. [Maximum mark: 23]

The points A(3,2), B(7,2) and C(3,8) are shown in the diagram below.

- (a) Find the equation of the perpendicular bisector of line segment [AB]. [2]
- (b) Find the equation of the perpendicular bisector of line segment [AC]. [2]
- (c) Write down the coordinates of the point of intersection P of the two bisectors and show that P is the midpoint of the line segment [BC]. [3]
- (d) Find the areas of the triangles
 - (i) ABC. (ii) ABP (iii) ACP [6]
- (e) Find the equation of the perpendicular bisector L of the line segment [BC] in the form ax + by + d = 0 with $a, b, c \in Z$. [5]
- (f) Show that the line L does not pass through A. [2]
- (g) Draw the three perpendicular bisectors of the sides of ABC on the diagram above. [3]


[MAA 2.1] LINES

20* [Maximum mark: 10] [with / without GDC]

The following three lines l_1 , l_2 , and l_3 are defined with equations

$$l_1: x + y = 5,$$
 $l_2: x - 2y = 8,$ $l_3: x = -2$

and are shown in the figure below.

- (a) Find the coordinates of the common point A between the lines l_1 and l_2 . [2]
- (b) Write down the coordinates of
 - (i) the common point B between the lines l_1 and l_3
 - (ii) the common point C between the lines l_2 and l_3 . [4]
- (c) **Hence**, find the area of the triangle ABC. [4]
