Colegio Marista "La Inmaculada" de Granada - Profesor Daniel Partal García - www.danipartal.net

Asignatura: Matemáticas II – 2ºBachillerato

Examen: Tema 1 Matemáticas II - Modelo 17

página 1/2

Instrucciones:

- a) Duración: 1 hora
- b) Tienes que **elegir** entre realizar únicamente los cuatro ejercicios de la **Opción A** o realizar únicamente los cuatro ejercicios de la **Opción B**. Indica, en la primera hoja donde resuelves el examen, la opción elegida.
- c) La puntuación de cada pregunta está indicada en la misma.
- **d)** Contesta de forma razonada y escribe a bolígrafo (no a lápiz) ordenadamente y con letra clara. Las faltas de ortografía, la mala presentación y no explicar adecuadamente las operaciones pueden restar hasta un máximo de 1 punto de la nota final.
- **e)** Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.

Opción A

Ejercicio 1.- Calcula:

a) [1 punto]
$$\lim_{x\to\infty} (x - \frac{x^2 + x + 1}{x})$$

b) [0,5 puntos]
$$\lim_{x\to 0} (\frac{x^2 - sen(x)}{x})$$

c) [1 punto]
$$\lim_{x\to\infty} \left(\sqrt{x^2 + x} - \sqrt{x^2 - x} \right)$$

Ejercicio 2.- [2,5 puntos] Sea un número al que se le resta cuatro veces el cuadrado de su valor. ¿Para qué número esta resta es máxima? Obtener el valor de la resta máxima.

Ejercicio 3.- [2,5 puntos] Calcula la ecuación explícita de la recta tangente a la función $f(x)=x\cdot(e^x+1)+x\cdot\ln(x+1)$ en el punto x=0 .

Ejercicio 4.- [2,5 puntos] Representa gráficamente (calculando previamente dominio, puntos de corte con los ejes, asíntotas, extremos relativos, crecimiento, decrecimiento, puntos de inflexión, concavidad y convexidad).

$$f(x) = \frac{x^2}{x-1}$$

Colegio Marista "La Inmaculada" de Granada – Profesor Daniel Partal García – www.danipartal.net

Asignatura: Matemáticas II – 2ºBachillerato

Examen: Tema 1 Matemáticas II - Modelo 17

página 2/2

Opción B

Ejercicio 1.- [2,5 puntos] Calcula las asíntotas de $y = \frac{e^x}{e^x + 1}$

Ejercicio 2.- [2,5 puntos] De todos los triángulos rectángulos cuyos catetos suman 10 cm, obtener las dimensiones (catetos e hipotenusa) del que tiene área máxima. Calcular también el valor de esa área máxima.

Ejercicio 3.- Sea $f(x)=x^3+ax^2+bx+c$ un polinomio con extremo relativo en x=1, con punto de inflexión en x=3 y que pasa por el origen de coordenadas.

- a) [2 puntos] Determinar a, b y c.
- **b)** [0,5 puntos] Calcula la ecuación explícita de la recta tangente a la función en el punto x=0.

Ejercicio 4.- [2,5 puntos] Representa gráficamente (calculando previamente dominio, puntos de corte con los ejes, asíntotas, extremos relativos, crecimiento, decrecimiento, puntos de inflexión, concavidad y convexidad).

$$y = \frac{1 - 2x}{x}$$