INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 5.4] TANGENT AND NORMAL LINES

Compiled by Christos Nikolaidis

Ο.	Dract	ice questions	
<u> </u>			
1.		imum mark: 16] <i>[without GDC]</i>	
		$f(x) = 2x^2 - 12x + 10.$	
	(a)	Find $f'(x)$	[2]
	(b)	Find the equations of the tangent line and the normal line	
		(i) at $x = 1$ (ii) at $x = 2$ (iii) at $x = 3$	[14]

[without GDC]

2.

[Maximum mark: 8]

(a)	Find the tangent line which is parallel to the line $y = 4x - 7$
(b)	Find the tangent line which is perpendicular to the line $y = \frac{1}{4}x - 7$
ſΜa'	kimum mark: 7] <i>[without GDC]</i>
	$f(x) = e^x \cos x.$
(a)	Find the gradient of the normal to the curve of f at $x = \pi$.
(b)	Find the gradient of the tangent to the curve of f at $x = \frac{\pi}{4}$.

4.	[Maximum mark: 6] [without GDC]
	The line $y = mx - 25$ is tangent to the curve $f(x) = x^2$. Find the possible values of m .
	METHOD A: Using derivatives (at the point of contact, $f = y$ and $f' = y'$)
	METHOD B: Using $\Delta = 0$ ($f = y$ gives a quadratic equation)

[Maximum mark: 8] [without GDC] The line $y = mx - 48$ is tangent to the curve $y = x^4$.				

6**.	[Maximum mark: 3] [without GDC]						
	Let $y = x^4$. Find the equations of the tangent lines passing through the point A(0,-48)						
	[Notice that the point A does not lie on the line]						
	METHOD A: Find the equation of the line of slope m passing though A.						
	Then use the fact that this line is tangent to the curve to find $\it m$.						
	METHOD B: Find the general equation of the tangent line at any point $x = a$.						
	Then use the fact that it passes though A to find $a.$						

A. Exam style questions (SHORT)

Let	$f(x) = 5x^2 + 10$. Find the equation of the tangent line at point P(1,15).
[Ma	ximum mark: 6] <i>[without GDC]</i>
Find	the equation of the tangent line and the equation of the normal to the curve with
9011	2
equ	ation $y = x^3 + 1$ at the point (1,2).
equ	ation $y = x^3 + 1$ at the point (1,2).
equ	ation $y = x^3 + 1$ at the point (1,2).
equ	

Cons	sider the function $f(x) = 4x^3 + 2x$. Find the equation of the normal to the curve of
f at	the point where $x = 1$.
-	imum mark: 10] <i>[without GDC]</i>
_	
Find	the equations of the tangent line and the normal line to curve $y = (x-1)^4$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1).
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1).
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1).
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1).
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1).
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$
Find (a)	the equations of the tangent line and the normal line to curve $y = (x-1)^4$ at point P(0,1). at $x = 1$

11.	[Max	ximum mark: 8] <i>[with GDC]</i>	
	Con	sider the curve $y = \ln(3x - 1)$. Let P be the point on the curve where $x = 2$.	
	(a)	Write down the gradient of the curve at P.	[2]
	(b)	Find the equation of the tangent to the curve at P.	[2]
	(c)	The normal to the curve at P cuts the <i>x</i> -axis at R. Find the coordinates of R.	[4]
12.	[May	ximum mark: 4] <i>[with GDC]</i>	
12.	_	$f(x) = \frac{x^3 e^x \ln x}{\sqrt{x+1}}$. Find the equations of the tangent line and the normal line to the	
	curv	we at $x = 1$. Express both equations in the form $y = mx + c$	

13.	Let f be a function defined for $x > -\frac{1}{3}$ by $f(x) = \ln(3x+1)$.			
	(a) (b)	Find $f'(x)$. Find the equation of the normal to the curve $y = f(x)$ at the point where $x = 2$. Give your answer in the form $y = ax + b$ where $a, b \in \mathbb{R}$.		
14.	[Max	kimum mark: 5]		
	Con	sider the function $h(x) = x^{\frac{1}{5}}$.		
	(a)	Find the equation of the tangent to the graph of h at the point where $x = a$,		
	41.	($a \neq 0$). Write the equation in the form $y = mx + c$.		
	(b)	Show that this tangent intersects the x -axis at the point $(-4a,0)$.		

15.	[Maximum mark: 4] [Without GDC]
	Find the coordinates of the point on the graph of $y = x^2 - x$ at which the tangent is
	parallel to the line $y = 5x$.
16.	[Maximum mark: 6] [without GDC]
	Let $f(x) = kx^4$. The point $P(1, k)$ lies on the curve of f . At P , the normal to the curve is
	parallel to $y = -\frac{1}{8}x$. Find the value of k .
	8

17.	-	sider the function $f: x \mapsto 3x^2 - 5x + k$.	
		equation of the tangent to the graph of f at $x = p$ is $y = 7x - 9$.	
	(a)	Write down $f'(x)$.	
	(b)	Find the value of (i) p ; (ii) k .	
18.	[Max	kimum mark: 8] [with / without GDC]	
	Cons	sider the curve with equation $f(x) = px^2 + qx$, where p and q are constants.	
	The	point A(1, 3) lies on the curve. The tangent to the curve at A has gradient 8.	
	(a)	Find the value of p and of q .	[5]
	(b)	Find the equations of the tangent line and the normal at $x = 0.2$	[3]

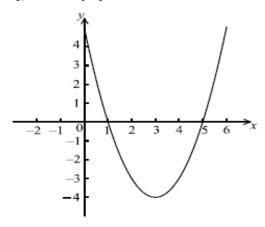
19.	[Max	kimum mark: 8]	
	Let	$f(x) = 3\cos 2x + \sin^2 x.$	
	(a)	Show that $f'(x) = -5\sin 2x$.	[4]
	(b)	Find the equation of the tangent line to the graph of f at $x = 0$.	[2]
	(c)	In the interval $\frac{\pi}{4} \le x \le \frac{3\pi}{4}$, one normal to the graph of f has equation $x = k$.	
		Find the value of k .	[2]

•	liviax	initini mark. oj <i>[with GDC / without GDC for HL]</i>
	Cons	sider the tangent to the curve $y = x^3 + 4x^2 + x - 6$
	(a)	Find the equation of this tangent at the point where $x = -1$.
	(b)	Find the coordinates of the point where this tangent meets the curve again.

21.	[Maximum mark: 6]	[without GDC]
	The line $y = 16x - 9$ is	is a tangent to the curve $y = 2x^3 + ax^2 + bx - 9$ at the point (1,7).
	Find the values of a	and b .
22.	[Maximum mark: 6]	[without GDC]
	The normal to the curv	We $y = \frac{k}{x} + \ln x^2$, for $x \neq 0$, $k \in \mathbb{R}$, at the point where $x = 2$, has
		x where $b \in \mathbb{R}$. Find the exact value of k .
	- 4	

23.	[Maximum mark: 6]	[without GDC]					
	Let $f(x) = 3x^2 - x + 4$. Find the values of m for which the line $y = mx + 1$ is a tangent					
	to the graph of f .						
	METHOD A: Using quadratics and the discriminant Δ						
	METHOD B: Using de	rivatives					

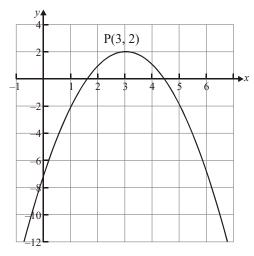
24.	[Maximum mark: 6] [without GDC]
	For what values of m is the line $y = mx + 5$ a tangent to the parabola $y = 4 - x^2$?
	METHOD A: Using derivatives
	METHOD B: Using quadratics and the discriminant Δ


25**.	[Maximum mark: 7] [without GDC]
	Let $f(x) = 5x^2 + 10$. Find the equations of the tangent lines <u>passing through</u> the point
	Q(1,10).
	METHOD A: Find the equation of the line of slope m passing though Q.
	Then use the fact that this line is tangent to the curve to find $\it m$.
	METHOD B: Find the equation of the tangent line at point $x = a$ in general.
	Then use the fact that it passes though Q to find $a.$

26**.	[Maximum mark: 7]	[without GDC]
	Find the equations of t	the two tangent lines to the parabola $y = 4 - x^2$, which pass
	through the point (0,5)	

B. Exam style questions (LONG)

27. [Maximum mark: 10] [without GDC]


The following diagram shows part of the graph of a quadratic function, with equation in the form y = (x - p)(x - q), where $p, q \in \mathbb{Z}$.

- (a) (i) Write down the value of p and of q
 - (ii) Write down the equation of the axis of symmetry of the curve.
- (b) Find the equation of the function in the form $y = (x h)^2 + k$, where $h, k \in \mathbb{Z}$.
- (c) Find $\frac{dy}{dx}$
- (d) Let T be the tangent to the curve at the point (0, 5). Find the equation of T.

28. [Maximum mark: 13] [with GDC]

The function f(x) is defined as $f(x) = -(x-h)^2 + k$. The diagram below shows part of the graph of f(x). The maximum point on the curve is P (3, 2).

- (a) Write down the value of (i) h (ii) k
- (b) Show that f(x) can be written as $f(x) = -x^2 + 6x 7$. [1]

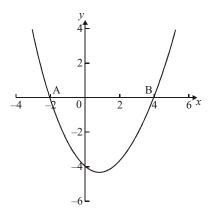
[2]

[8]

(c) Find f'(x). [2]

The point Q lies on the curve and has coordinates (4, 1). A straight line L, through Q, is perpendicular to the tangent at Q.

(d) (i) Find the equation of L.


(ii)	The line <i>L</i> intersects the curve again at R. Find the <i>x</i> -coordinate of R.

29.

[Maximum mark: 11] [with GDC]			
The	function	on f is defined by $f: x \mapsto -0.5x^2 + 2x + 2.5$.	
(a)	Write	e down (i) $f'(x)$; (ii) $f'(0)$.	2
(b)	Let /	V be the normal to the curve at the point where the graph intercepts the	
	y-axi	is. Show that the equation of <i>N</i> may be written as $y = -0.5x + 2.5$.	[3]
Let	$g:x\mapsto$	-0.5x + 2.5	
(c)	(i)	Find the solutions of $f(x) = g(x)$	
	(ii)	Hence find the coordinates of the other point of intersection of the normal and the curve.	[6]

30. [Maximum mark: 15] [with / without GDC]

> The equation of a curve may be written in the form y = a(x - p)(x - q). The curve intersects the x-axis at A(-2, 0) and B(4, 0). The curve of y = f(x) is shown in the diagram below.

- Write down the value of p and of q. (a) (i)
 - Given that the point (6, 8) is on the curve, find the value of a. (ii)
 - Write the equation of the curve in the form $y = ax^2 + bx + c$.
- A tangent is drawn to the curve at a point P. The gradient of this tangent is 7. (b) Find the coordinates of P. [4]
- (c) The line L passes through B(4, 0), and is normal to the curve at B.
 - Find the equation of *L*. (i)
 - (ii) Find the *x*-coordinate of the point where *L* intersects the curve again. [6]

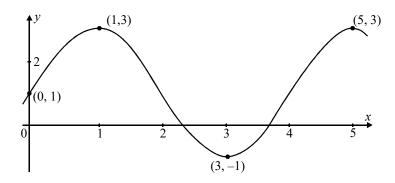
[5]

31.

[Maximum mark: 24] [without GDC]		
The	function f is given by $f(x) = \frac{2x+1}{x-3}$, $x \in \mathbb{R}$, $x \neq 3$.	
(a)	(i) Show that $y = 2$ is an asymptote of the graph of $y = f(x)$. (ii) Find the vertical asymptote of the graph.	
	(iii) Write down the coordinates of the point <i>P</i> at which the asymptotes intersect.	[4]
(b)	Find the points of intersection of the graph and the axes.	[4]
(c)	Hence sketch the graph of $y = f(x)$, showing the asymptotes by dotted lines.	[4]
(d)	Show that $f'(x) = \frac{-7}{(x-3)^2}$ and hence find the equation of the tangent at	
	the point <i>S</i> where $x = 4$.	[6]
(e)	The tangent at the point T on the graph is parallel to the tangent at S .	
(f)	Find the coordinates of <i>T</i> . Show that <i>P</i> is the midpoint of IST.	[5]
(f)	Show that P is the midpoint of $[ST]$.	[1]

32.	[Max	ximum mark: 9]	
	Let	$f(x) = x^3 - 3x^2 - 24x + 1.$	
	(a)	Find $f'(x)$	[2]
	The	tangents to the curve of f at the points P and Q are parallel to the x -axis, where	
	P is	to the left of Q.	
	(b)	Calculate the coordinates of P and of Q.	[3]
	Let /	N_1 and N_2 be the normals to the curve at P and Q respectively.	
	(b)	Write down the coordinates of the points where	
		(i) the tangent at P intersects N_2 ;	
		(ii) the tangent at Q intersects N_1 .	[4]

33.	[Maximum	mark: 141	[with	GDC]
JJ.	IIVIAAIIIIUIII	IIIain. 14	/ / / / / / /	GDCI


- (a) Sketch and label the curves $y = x^2$ for $-2 \le x \le 2$, and $y = -\frac{1}{2} \ln x$ for $0 < x \le 2$. [2]
- (b) Find the x-coordinate of P, the point of intersection of the two curves. [2]
- (c) If the tangents to the curves at P meet the y-axis at Q and R, calculate the areaof the triangle PQR.[6]
- (d) Prove that the two tangents at the points where x = a, a > 0, on each curve are always perpendicular. [4]

 	 •••••

.....

34*. [Maximum mark: 20] [with / without GDC]

The diagram shows the graph of the function f given by $f(x) = A \sin\left(\frac{\pi}{2}x\right) + B$, for $0 \le x \le 5$, where A and B are constants, and x is measured in radians.

The graph includes the points (1, 3) and (5, 3), which are maximum points of the graph.

(a) Show that A = 2, and find the value of B. [5]

(b) Show that
$$f'(x) = \pi \cos\left(\frac{\pi}{2}x\right)$$
. [4]

The line $y = k - \pi x$ is a tangent line to the graph for $0 \le x \le 5$.

- (c) Find
 - (i) the point where this tangent meets the curve;
 - (ii) the value of k.
- (d) Solve the equation f(x) = 2 for $0 \le x \le 5$. [5]

[6]

35**.	[Max	imum mark: 15] <i>[with GDC]</i>	
	(a)	The function g is defined by $g(x) = \frac{e^x}{\sqrt{x}}$, for $0 < x \le 3$.	
		(i) Sketch the graph of g .	
		(ii) Find $g'(x)$	
		(iii) Write down an expression representing the gradient of the normal to the curve at any point.	[8]
	(b)	Let P be the point (x, y) on the graph of g, and Q the point $(1, 0)$.	
		(i) Find the gradient of (PQ) in terms of x .	
		(ii) Given that the line (PQ) is a normal to the graph of g at the point P , find	
		the minimum distance from the point ${ m Q}$ to the graph of g .	[7]