Kurz GeoGebra

3.

Geometrie v prostoru

GeoGebra institut Ostrava

ggi.vsb.cz

GeoGebra institut

Kurz v rámci projektu implementace krajského akčního plánu Olomouckého kraje

Přehled nástrojů pro 3D Nákresnu (verze Klasik 5)

Pohyb

Ukazovátko

Bod

Nový bod

Bod na objektu

Průsečík

Střed

Připojit / Oddělit bod

Přímka

Úsečka

Úsečka s pevnou délkou

Polopřímka

Vektor

, Vektor z bodu

Speciální přímky

7	
	Kolmice
	Rovnoběžka
4	Osa úhlu
-0	Tečna z bodu
. ?	Polára
Ja.	Množina bodů

Mnohoúhelník

Rovina

Kolmá rovina

Rovnoběžná rovina

Slunečník

Zadání: Vytvoříme v GeoGebře slunečník, který lze rozevřít a zavřít.

Základem slunečníku budou tři body na jedné přímce, mezi prvními dvěma body se bude pohybovat bod na ovládání slunečníku Zobrazíme *Grafický náhled 3D* a skryjeme osy, skryjeme *Nákresnu*.

1.	Vstup:	Do vstupu postupně zadáme $A=(0,0,0), B=A+(0,0,19),$ C=B+(0,0,5)
2.	~	Vytvoříme úsečku AB a úsečku BC
3.	• ^A	Na první úsečce f=AB vytvoříme bod D, změníme jeho barvu na oranžovou
4.		Vytvoříme kouli a se středem v bodě D a poloměrem 12, vytvoříme druhou kouli b se středem v bodě C a poloměrem 13
5.	8	Pomocí nástroje Průnik dvou ploch najdeme průnik obou koulí, vznikne kružnice c, která bude tvořit okraj slunečníku. Obě koule skryjeme
6.	Vstup:	Vytvoříme kužel d=Kuzel(c, Vzdalenost(Stred(c),C)) (pokud se kužel zobrazí opačně s vrcholem dole, tak ve vlastnostech kuželu připíšeme v definici znaménko "-" před příkaz Vzdalenost)
7.	Vstup:	Zadáme stin = Kruznice(A, Polomer(c), Vektor((0,0,1))). Ve vlastnostech kružnice stin nastavíme <i>Barvu</i> na šedou, <i>Neprůhlednost</i> na 100, <i>Tloušťku čar</i> na 1

Vytvořením kuželu vznikne nová kuželosečka, která je vrcholem kuželu a splývá s bodem C (můžeme ji skrýt), dále vznikne nová pocha. Ve vlastnostech plochy nastavíme *Barvu* na purpurovou, *Neprůhlednost* na 100. Ve vlastnostech podstavné kružnice c nastavíme *Barvu* na purpurovou, *Neprůhlednost* na 0, *Tloušťku čáry* na 9 a *Styl čáry* na tečkovanou. Skryjeme všechny popisy objektů. Ve *Vlastnostech* bodu D můžeme zapnout *Animaci* a změnit její hodnotu na *oscilující*.

Náměty na vylepšení slunečníku

Změna barvy pozadí a roviny

Pravým tlačítkem klikneme do *Grafického náhledu 3D*, vybereme řádek Nákresna... a v části Různé nastavíme barvu pozadí na světle žlutou.

Změnu barvy roviny, na které stojí slunečník, můžeme provést ve *Vstupním poli* zadáním příkazu NastavitBarvu(RovinaxOy, zelená). (Tato změna se neuchová při uložení souboru. Při zpětném otevření bude mít rovina původní barvu.)

Přidání podpěrných tyček

8.	Vstup:	Vytvoříme bod na kružnici c příkazem E=Bod(c), bod skryjeme
9.	Vstup:	Vytvoříme posloupnost úseček příkazem tyce=Posloupnost (Usecka (D,
		Rotace(E,2*i*pi/8,f)),i,0,8)

Podle potřeby upravíme tloušť ku a barvu posloupnosti.

Přidání vodorovných pruhů na slunečník

10.	Vstup:	Do vstupu napíšeme
		pruhy=Posloupnost(Stejnolehlost(c,j/5,C),j,1,4)

Podle potřeby upravíme tloušť ku a barvu posloupnosti.

Protažení slunečníku

11.	Vstup:	Do vstupu napíšeme novec=Stejnolehlost(c,1.4,C)
-----	--------	---

Otevřeme si vlastnosti kuželu d a v jeho definici nahradíme kružnici c novou kružnicí novec (je tan dakrát). Změníme vlastnosti podstavné kuželosečky a pláště stejně, jako u původního kuželu. Ve vlastnostech kuželosečky stin v definici nahradíme kružnici c kružnicí novec.

Zavěšené ozdoby

12.	Vstup:	Do vstupu napíšeme
		lem=Posloupnost(Koule(Bod(novec, j/12)-(0,0,1),1),j,1,12)
13.	Vstup:	Přidáme stíny
		<pre>stin=Posloupnost(Kruznice((x(Bod(novec,j/12)),</pre>
		y(Bod(novec,j/12)),0),1,OsaZ),j,1,12)

Řez krychle

Zadání: Vytvořte pomůcku na řez krychle ve stereometrii.

1.	L _s	Otevřeme okno <i>Grafický náhled 3D</i> a to bud' tak, že z postranního panelu vy- bereme <i>3D Grafika</i> nebo z hlavního menu vybereme položku <i>Zobrazit/ Gra-</i> <i>fický náhled 3D</i> .
2.		Vytvoříme krychli: dvakrát klikneme na (šedou) rovinu xy do míst, kde chceme umístit vrcholy A a B krychle.
3.	••	Vytvoříme rovinu řezu: postupně klikneme na osu x, y a z. Vytvoříme tak tři body I, J a K a jimi určenou rovinu p.
4.	Â	Nastavíme body I, J a K tak, aby rovina p měla s krychlí neprázdný průnik.
5.		V <i>Algebraickém okně</i> klikneme postupně na krychli a a na rovinu p.
6.	4	Z hlavního menu vybereme položku <i>Zobrazit/Nákresna</i> 2. V <i>Nákresně</i> 2 skry- jeme osy.
7.	Vstup:	Do vstupního pole napíšeme příkaz rov=false
8.	Vstup:	Do vstupního pole napíšeme příkaz res=false
9.	4	Objekty rov a res zobrazíme v <i>Nákresně</i> 2. Ve <i>Vlastnostech</i> rov přidáme popisek rovina řezu a ve <i>Vlastnostech</i> res přidáme popisek řešení.
10.	14	Rovině p nastavíme podmínku zobrazení rov. Úsečkám c, d, e, f, g a h a řezu mnohoúhelníkl nastavíme podmínku zobrazení res.
11.	lş.	Objektům nastavíme požadovanou barvu a styl, změníme popřípadě vy- pneme popisky u objektů, v hlavním menu <i>Nastavení/Pro pokročilé/Předvolby</i> - <i>Grafický náhled 3D</i> vypneme <i>zobrazit ořezový box</i> , zapneme <i>Použít ořez po-</i> <i>hledu</i> .

Změnu barvy roviny, na které stojí krychle, můžeme provést ve *Vstupním poli* zadáním příkazu NastavitBarvu (RovinaxOy, 0, 1, 0.5). (Tato změna se neuchová při uložení souboru. Při zpětném otevření bude mít rovina původní barvu.)

Síť válce

Zadání: Vytvoříme v GeoGebře pomůcku pro dynamické rozvinutí povrchu válce do roviny podstavy, síť válce.

Příkaz *Sit* v GeoGebře pracuje pouze s hranatými tělesy. Lze jej použít na jehlan, hranol a platónská tělesa. Naše těleso bude válec.

Zadání válce

1.	a=2	Vytvoříme posuvník p od 0 do 1 s krokem 0.01, který bude měnit roze-
	-	
2	a=2	Vytvoříme posuvník polomer od 0 do 5 s krokem 0.05, který bude měnit
Ζ.		poloměr válce.
2	a=2	Vytvoříme posuvník vyska od 0 do 8 s krokem 0.05, který bude měnit
5.		výšku válce. Posuvník nastavíme na hodnotu 2.
	Vstup:	Zkonstruujeme středy podstav S=(-polomer,0,0), T=S+(0,0,vyska)
4.		a body určující povrchovou přímku umístěnou do osy z,
		A=S+(polomer,0,0),B=A+(0,0,vyska)
5.	•	Zobrazíme <i>Grafický náhled 3D</i> . Vytvoříme válec zadaný středy podstav S a T
		s poloměrem polomer. Změníme barvu válce např. na zelenou.

Při vytváření sítě se plášť původního válce začne rozevírat. Rozevírání válce realizujeme využitím pomocného válce, jehož poloměr R se bude zvětšovat. Požadujeme, aby v případě nastavení posuvníku p na hodnotu 0 pomocný válec splynul se zadaným válcem, a aby při hodnotě blížící se 1 posuvníku p se poloměr R zvětšoval do nekonečna, válec se bude rozevírat do roviny podstavy.

6. Zadáme poloměr pomocného válce R=polomer/(1-p)

Parametrizace pláště pomocného válce

Každý bod X ležící na plášti pomocného válce je určen třemi kartézskými souřadnicemi, X = (x, y, z) = (f1, f2, f3) závislými na dvou parametrech u a v.

		Plášť válce parametrizujeme funkcemi
		<pre>f1(u,v)=Funkce(R*cos(v*polomer/R)-R,u,0,vyska,v,-pi,pi)</pre>
7.	Vstup:	f2(u,v)=Funkce(R*sin(v*polomer/R),u,0,vyska,v,-pi,pi)
		f3(u,v)=Funkce(u,u,0,vyska,v,-pi,pi)
		Funkce skryjeme.

Předchozí parametrizované rovnice představují posunuté cylindrické souřadnice, kdy osou válce není osa z, ale osa probíhající středy podstav pomocného válce. Úhlová souřadnice je nastavena tak, aby v každém okamžiku délka zobrazovaného oblouku rozvíjejícího se pomocného válce byla rovna délce obvodu podstavy zadaného válce.

Rotace pláště pomocného válce kolem osy y

Budeme rotovat plášť pomocného válce kolem osy y, která je zároveň tečnou k podstavě v bodě A. Využijeme známé transformační vztahy pro rotaci kolem osy y o úhel p*pi/2.

		Do vstupu postupně zadáme
		g1(u,v)=f1(u,v)*cos(p*pi/2)+f3(u,v)*sin(p*pi/2)
8.	Vstup:	g2(u,v)=f2(u,v)
		g3(u,v)=-f1(u,v)*sin(p*pi/2)+f3(u,v)*cos(p*pi/2)
		Funkce skryjeme.

Plášť pomocného válce

		Plast=Plocha(g1(u,v),g2(u,v),g3(u,v),u,0,vyska,v,-pi,pi)
9.	Vstup:	Ve vlastnostech plochy nastavíme <i>Tloušť ku čáry</i> na 0, <i>Barvu</i> na purpurová,
		Neprůhlednost na 75 a zrušíme zobrazení popisu.

Zkuste hýbat s posuvníkem p.

Pro větší přehlednost přidáme k plášti okraj pomocí parametrizace pláště, ve které nastavíme jeden parametr na krajní hodnotu.

Krajní poloha pláště pro p=1 - plně rozvinutá síť

Nakonec přidáme část (obdélník o rozměrech vyska a 2*pi*polomer), která bude odpovídat krajní poloze parametru p=1, kdy parametrizovaná plocha není definovaná, protože ve vyjádření R dělíme výrazem (1-p), který je v krajní poloze roven nule.

		SitCast0=Mnohouhelnik[A+(0,polomer*pi,0),
11.	Vstup:	A+(vyska,polomer*pi,0), A+(vyska,-polomer*pi,0),
		A+(0,-polomer*pi,0))

Ve vlastnostech SitCast0 změníme *Tloušťku čáry* na 3, změníme *Barvu* na purpurovou, nastavíme *Neprůhlednost* na 75 a zrušíme zobrazení popisu. Tento obdélník budeme chtít zobrazit jen v případě, kdy p=1. Proto do *Podmínek zobrazení objektu* v záložce *Pro pokročilé* napíšeme podmínku p==1. To samé napíšeme do podmínek zobrazení úseček f, g, h, i, které tvoří okraj obdélníku SitCast0.

Podstavy v síti

Výsledná síť se skládá z několika částí. Bude obsahovat dvě podstavy a rozevírající se plášť. První podstava bude splývat se spodní podstavou zadaného válce. Druhá podstava vzniká z horní podstavy válce složením rotace kolem tečny k horní podstavě v bodě B a rotace kolem tečny k spodní podstavě v bodě A, v obou případech rotujeme o úhel p*pi/2.

12.	Vstup:	Spodní podstava
		SitCast1=Kruznice(S,polomer,Vektor((0,0,1)))
		Barva: purpurová, Neprůhlednost: 75, Tloušť ka čáry: 3, zrušíme zobrazení po-
		pisu.
13.	Vstup:	Střed horní podstavy
		<pre>pomStred=Rotace(Rotace(T,p*pi/2,B,Vektor((0,1,0))),</pre>
		p*pi/2,A,Vektor((0,1,0)))
		Objekt skryjeme.
14.	Vstup:	Kolmý směr na horní podstavu
		<pre>pomVektor=Rotace(Vektor((0,0,1)),p*pi,OsaY)</pre>
		Objekt skryjeme.
15.	Vstup:	Horní podstava
		SitCast2=Kruznice(pomStred,polomer,pomVektor)
		<i>Barva</i> : purpurová, <i>Neprůhlednost</i> : 75, <i>Tloušť ka čáry</i> : 3, zrušíme zobrazení po-
		pisu.

Chceme-li sestrojit kružnici v trojrozměrném prostoru v obecné rovině, potřebujeme kromě znalosti středu a poloměru takové kružnice také znát kolmý směr na tuto rovinu.

