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Abstract: Previously a new notable point of plane triangles was discovered that fits into the 

Euler line and it has application in microwave measurements. Now this 2-dimensional result is 

generalized. This paper is intended to stimulate interaction between geometry and physics. 
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1. Introduction 

Sensitivity minimization in microwave measurements led us to a notable point of plane triangles 

[4]. Then we analyzed the application possibility and obtained the so-called minimum 

sensitivity calibration [5]. In this paper we generalize the notable point for more than 2 

dimensions. 

In Section 2 we define the new notable point in 3 dimensions. We prove that this notable point 

does not fit into the Euler line [1] of the tetrahedron in general. A condition for the length of 

two opposite edges of the tetrahedron has been provided for the notable point to fit into the 

Euler line. In Section 3 the number of new notable points has been investigated. In Section 4, 

further generalization possibilities have been provided. 

We are not aware yet of applications. According to the topics of the author, applications are 

expected in circuit theory or quantum communications. 

Finally, we repeat here our starting point to be generalized [4], Fig. 1.1. 

 

Fig. 1.1. The triangle abc, and our notable point x inside. Line sections that are necessary for 

definition of x, are denoted by corresponding colors and line styles  

The notable point x for the triangle abc is defined by xa/bc=xb/ca=xc/ab, where we denote the 

line section between points a and b by ab. The number of such points x is 2,1,1 and 0 for general 

acute, regular, right and obtuse triangles, respectively, and the notable point fits into the Euler 

line. 

2. Extension of our notable point for tetrahedrons 
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In this Section we generalize our notable point and we prove that under some conditions, it fits 

into the Euler line of the tetrahedron. 

Our original form for triangles was 

|𝑥−𝑎|

|𝑏−𝑐|
=

|𝑥−𝑏|

|𝑐−𝑎|
=

|𝑥−𝑐|

|𝑎−𝑏|
     (2.1) 

where 𝑥 is the position vector pointing from the origin to the new notable point. Taking square 

of (2.1), squared section length between x and a vertex, is divided by squared length of the edge 

of the triangle opposite to the vertex. 

For tetrahedrons, denominator is modified to the area of the face opposite to the vertex (Fig. 

4.1): 

|𝑥−𝑎|
2

𝐴𝑏𝑐𝑑
2 =

|𝑥−𝑏|
2

𝐴𝑐𝑑𝑎
2 =

|𝑥−𝑐|
2

𝐴𝑑𝑎𝑏
2 =

|𝑥−𝑑|
2

𝐴𝑎𝑏𝑐
2     (2.2) 

 

Fig. 2.1. A tetrahedron, with a point x inside. The section and face in (2.2), leftmost 

expression, are colored in red 

Definition 1: Given the tetrahedron abcd, a notable point 𝑥 is defined by (2.2). 

Theorem 1: The notable point 𝑥 fits into the Euler line, if it exists, and the tetrahedron has at 

least one pair of opposite edges that satisfy some conditions (2.35), (2.37-38). 

Proof: 

Area of the triangle abc, denoted as 𝐴𝑎𝑏𝑐, can be expressed as 

𝐴𝑎𝑏𝑐 = |𝑎 𝑥 𝑏 + 𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑎|    (2.3) 

where 𝑎 𝑥 𝑏 denotes the cross product of 𝑎, 𝑏. With (2.2-3), 

(𝑥 − 𝑎)
2

= 𝜇(𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏)2   (2.4) 

(𝑥 − 𝑏)
2

= 𝜇(𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑎 + 𝑎 𝑥 𝑐)2   (2.5) 

and two more equations that we do not use now. Notation 𝜇 is a non-negative real quantity, its 

dimension is 1/length2. 

Take the difference of (2.4-5): 

(𝑏 − 𝑎)(2𝑥 − 𝑎 − 𝑏) = 
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= 𝜇(𝑏 − 𝑎)[(𝑐 − 𝑑) 𝑥 (𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑎 + 𝑎 𝑥 𝑐)] (2.6) 

Because 𝑏 − 𝑎 ≠ 0, 

2𝑥 − 𝑎 − 𝑏 = 𝜇(𝑐 − 𝑑) 𝑥 (𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑎 + 𝑎 𝑥 𝑐) + 𝜆1𝑣1 (2.7) 

(𝑏 − 𝑎)𝑣1 = 0     (2.8) 

In our paper [4], the origin was set to the altitude center (orthocenter). But the orthocenter does 

not always exist in case of a tetrahedron. Thus, we place the origin into the Monge point [2] 

that always exists [3]. The Monge point is defined as intersection of planes, that pass the 

midpoint of an edge and perpendicular to the opposite edge. A line crossing the Monge point 

can be described as 

𝑥 = 𝑥0 + 𝜈𝑧      (2.9) 

where 𝑥0 is the vector from the origin to the Monge point, 𝑧 is a vector parallel to this line and 

𝜈 is an arbitrary real number. The following relations are hold: 

𝑎+𝑏

2
= 𝑥0 + 𝜈𝑧     (2.10a) 

𝑧(𝑐 − 𝑑) = 0      (2.10b) 

and vertices are permutable. That is: 

[𝑎 + 𝑏 − 2𝑥0] (𝑐 − 𝑑) = 0    (2.11) 

We want to put the Monge point into the origin, 𝑥0 = 0: 

(𝑎 + 𝑏)(𝑐 − 𝑑) = 0     (2.12) 

Vertices are permutable: 

(𝑐 + 𝑑)(𝑎 − 𝑏) = 0     (2.13) 

From (2.12-13), 

𝑎𝑐 = 𝑏𝑑     (2.14) 

Again, vertices are permutable: 

𝑎𝑏 = 𝑐𝑑     (2.15) 

𝑎𝑑 = 𝑏𝑐     (2.16) 

Between the 6 quantities in (2.14-16), only 3 equations are satisfied, (2.14-16), but 𝑎𝑏 ≠

𝑎𝑐, 𝑎𝑏 ≠ 𝑎𝑑, 𝑎𝑐 ≠ 𝑎𝑑 in general. 

Then, we introduce three notations: 

𝑘1 = 𝑎𝑏 = 𝑐𝑑     (2.17) 

𝑘2 = 𝑎𝑐 = 𝑏𝑑     (2.18) 
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𝑘3 = 𝑎𝑑 = 𝑏𝑐     (2.19) 

Comparing (2.8) and (2.13), a possibility is 

𝑣 = 𝑐 + 𝑑     (2.20) 

Now we simplify (2.7) 

(𝑐 − 𝑑) 𝑥 (𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑎 + 𝑎 𝑥 𝑐) = 

= (𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑 + (−𝑐 + 𝑑 )𝑥 𝑏 + (𝑑 −  𝑐)𝑥 𝑎 ) = 

= (𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑 + (𝑑 −  𝑐)𝑥 (𝑏 +  𝑎) )   (2.21) 

A known identity: 

𝑝 𝑥 (𝑟 𝑥 𝑠) = 𝑟 (𝑝 . 𝑠) − 𝑠(𝑝. 𝑟)    (2.22) 

where the dot notation means a dot (scalar) product. 

(2.22) is applied for (2.21): 

(𝑐 − 𝑑) 𝑥((𝑑 −  𝑐)𝑥 (𝑏 + 𝑎)) =  (𝑑 −  𝑐) ((𝑐 − 𝑑)(𝑏 +  𝑎)) − (𝑏 +  𝑎) ((𝑐 − 𝑑)(𝑑 −

 𝑐)) = (𝑏 +  𝑎)(𝑑 −  𝑐)
2
    (2.23) 

because of (2.12). Then (2.7), (2.20) and (2.23) yield 

2𝑥 − 𝑎 − 𝑏 = 𝜇 [(𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑) + (𝑏 + 𝑎)(𝑑 −  𝑐)
2

] + 𝜆1(𝑐 + 𝑑) (2.24) 

Vertices are permuted: 

2𝑥 − 𝑐 − 𝑑 = 𝜇 [(𝑎 − 𝑏) 𝑥 (2𝑎 𝑥 𝑏) + (𝑑 + 𝑐)(𝑏 −  𝑎)
2

] + 𝜆2(𝑎 + 𝑏) (2.25) 

Difference of the last two equations is the following: 

0 = (𝑎 +  𝑏) (𝜇(𝑑 −  𝑐)
2

+ 1) − (𝑐 + 𝑑) (𝜇(𝑏 −  𝑎)
2

+ 1) + 𝜆1(𝑐 + 𝑑) − 𝜆2(𝑎 + 𝑏) +

𝜇[(𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑) − (𝑎 − 𝑏) 𝑥 (2𝑎 𝑥 𝑏)]   (2.26) 

(𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑) = 𝛼1(𝑐 + 𝑑)    (2.27) 

(𝑎 − 𝑏) 𝑥 (2𝑎 𝑥 𝑏) = 𝛼2(𝑎 + 𝑏)    (2.28) 

We return to (2.27-28) in Appendix A2. 

As 𝑎 + 𝑏 and 𝑐 + 𝑑 are linearly independent: 

  𝜇(𝑎 −  𝑏)
2

+ 1 = 𝜆1 + 𝜇𝛼1     (2.29) 

𝜇(𝑐 −  𝑑)
2

+ 1 = 𝜆2 + 𝜇𝛼2     (2.30) 

Substitution into (2.24) will result in 
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2𝑥 = (𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝜇 [(𝑏 +  𝑎)(𝑑 −  𝑐)
2

+ (𝑐 + 𝑑)(𝑎 −  𝑏)
2

] (2.31) 

For 𝜇 = 0, (2.31) gives the center of the circumscribed sphere [3]. Let us see when it crosses 

the Monge point: 

0 = (𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝜇 [(𝑏 + 𝑎)(𝑑 −  𝑐)
2

+ (𝑐 + 𝑑)(𝑎 −  𝑏)
2

] (2.32) 

The necessary and sufficient condition is that the bracketed vector should be parallel to 𝑎 +

𝑏 + 𝑐 + 𝑑.  

𝑎 + 𝑏, 𝑐 + 𝑑 are linearly independent: 

0 = 1 + 𝜇(𝑑 −  𝑐)
2
     (2.33) 

0 = 1 + 𝜇(𝑎 −  𝑏)
2
     (2.34) 

From (2.33-34): 

(𝑑 −  𝑐)
2

= (𝑎 −  𝑏)
2
    (2.35) 

With all these, 

2𝑥 = (𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝜇(𝑎 + 𝑏 + 𝑐 + 𝑑 )(𝑑 − 𝑐)
2
  (2.36) 

Now we return to (2.27-28). From (2.27) and (2.22) follows that (A2. Appendix) 

|𝑐|
2

= |𝑑|
2
     (2.37) 

Similarly, from (2.28): 

|𝑎|
2

= |𝑏|
2
     (2.38) 

There are opposite edges that should have a symmetric position with respect to the Monge point. 

Although from (2.2), 𝜇 ≥ 0 follows, we extend the line to negative 𝜇 as well. 

As we investigate Euler line, we list our notations for notable points in Table 1: 

Name of the notable point actual value for vector 𝑥 actual value for parameter 𝜇 

Monge center M 𝑥0 𝜇0 

weight center (centroid) G 𝑥1 𝜇1 

center of circumscribed 

sphere (circumcenter) C 

𝑥2 𝜇2 

intersection of the Euler line 

and a face of the tetrahedron 
𝑥3 𝜇3 

The line in (2.37) crosses the origin for 𝜇0: 

 2𝑥0 = 0 = (𝑎 +  𝑏 + 𝑐 + 𝑑) + 𝜇0(𝑎 + 𝑏 +  𝑐 + 𝑑)(𝑑 −  𝑐)
2
  (2.39) 

𝜇0 = −
1

(𝑑− 𝑐)
2     (2.40) 
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The weight center is 𝑥1, and it corresponds to 𝜇1: 

𝑥1 =
𝑎+ 𝑏+𝑐+𝑑

4
     (2.41) 

2𝑥1 =
𝑎+ 𝑏+𝑐+𝑑

2
= (𝑎 +  𝑏 + 𝑐 + 𝑑) + 𝜇1(𝑎 + 𝑏 +  𝑐 + 𝑑)(𝑑 −  𝑐)

2
  (2.42) 

𝜇1 = −
1

2(𝑑− 𝑐)
2    (2.43) 

As we can see now that both the altitude and weight centers fit into this line, that proves 

our notable point also fits into the Euler line. This is the end of the proof. The center of 

circumscribed sphere 𝑥2 corresponds to 𝜇2 (A1. Appendix): 

𝑥2 =
1

2
(𝑎 + 𝑏 + 𝑐 + 𝑑)    (2.44) 

From (2.36): 

2𝑥2 = 𝑎 +  𝑏 + 𝑐 + 𝑑 = (𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝜇2(𝑎 + 𝑏 +  𝑐 + 𝑑)(𝑑 −  𝑐)
2
 

 (2.45) 

𝜇2 = 0      (2.46) 

Now we calculate the intersections of the Euler line with faces of the tetrahedron. In general, 

there are two such faces. But we can imagine that a special case is a vertex and the opposite 

face. Let us investigate this last situation now. Let the vertex be 

𝑥3 = 𝑎      (2.47) 

From (2.34), 

2𝑎 = (𝑎 +  𝑏 + 𝑐 + 𝑑) + 𝜇3(𝑎 + 𝑏 +  𝑐 + 𝑑)(𝑑 −  𝑐)
2
  (2.48) 

In general, 𝑎 is linearly dependent from 𝑏, 𝑐 and 𝑑: 

𝑎 = 𝛾1𝑏 + 𝛾2𝑐 + 𝛾3𝑑 = 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘   (2.49) 

where 𝑖,𝑗, 𝑘 is the orthonormal system, and 

𝑎1 = 𝛾1𝑏1 + 𝛾2𝑐1 + 𝛾3𝑑1     (2.50) 

𝑎2 = 𝛾1𝑏2 + 𝛾2𝑐2 + 𝛾3𝑑2     (2.51) 

𝑎3 = 𝛾1𝑏3 + 𝛾2𝑐3 + 𝛾3𝑑3     (2.52) 

(2.49-51) is the way how to determine 𝛾1, 𝛾2, 𝛾3 from 𝑎, 𝑏, 𝑐, 𝑑.  

From (2.38,2.48-49): 

0 = (−(𝛾1𝑏 + 𝛾2𝑐 + 𝛾3𝑑) +  𝑏 + 𝑐 + 𝑑) + 𝜇3(𝛾1𝑏 + 𝛾2𝑐 + 𝛾3𝑑 +  𝑏 + 𝑐 + 𝑑)(𝑑 −  𝑐)
2

 (2.53) 

Vectors 𝑏, 𝑐 and 𝑑 are linearly independent: 
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0 = −𝛾1 + 1 + 𝜇3(𝛾1 + 1)(𝑑 −  𝑐)
2
   (2.54) 

0 = −𝛾2 + 1 + 𝜇3(𝛾2 + 1)(𝑑 − 𝑐)
2
   (2.55) 

0 = −𝛾3 + 1 + 𝜇3(𝛾3 + 1)(𝑑 − 𝑐)
2
   (2.56) 

𝜇3 =
𝛾−1

𝛾+1

1

(𝑑− 𝑐)
2 for 𝛾 = 𝛾1 = 𝛾2 = 𝛾3 ≠ −1  (2.57) 

Now we determine the point of intersection in general case. Let the face be bcd. The new notable 

point 𝑥4 fits now into bcd as 𝑥4 is the intersection of the Euler line and bcd: 

𝑥4 = 𝑐 + 𝛼(𝑏 − 𝑐) + 𝛽(𝑐 − 𝑑)    (2.58) 

From (2.34,2.38,2.58): 

2[𝑐 + 𝛼(𝑏 − 𝑐) + 𝛽(𝑐 − 𝑑)] = (𝛾1𝑏 + 𝛾2𝑐 + 𝛾3𝑑 +  𝑏 + 𝑐 + 𝑑) + 𝜇4(𝛾1𝑏 + 𝛾2𝑐 + 𝛾3𝑑 +

 𝑏 + 𝑐 + 𝑑)(𝑑 −  𝑐)
2
  (2.59) 

Vectors 𝑏, 𝑐, 𝑑 are linearly independent: 

2𝛼 = (𝛾1 + 1)(1 + 𝜇4(𝑑 − 𝑐)
2

)    (2.60) 

2 − 2𝛼 + 2𝛽 = (𝛾2 + 1)(1 + 𝜇4(𝑑 −  𝑐)
2

)   (2.61) 

−2𝛽 = (𝛾3 + 1)(1 + 𝜇4(𝑑 −  𝑐)
2

)    (2.62) 

2 = (𝛾1 + 𝛾2 + 𝛾3 + 3) (1 + 𝜇4(𝑑 −  𝑐)
2

)   (2.63) 

𝜇4 =
−1−(𝛾1+𝛾2+𝛾3)

𝛾1+𝛾2+𝛾3+3

1

(𝑑− 𝑐)
2     (2.64) 

𝑥4 =
1

2
(𝑎 + 𝑏 + 𝑐 + 𝑑) (1 + 𝜇4(𝑑 − 𝑐)

2
) =

1

2
(𝑎 +  𝑏 + 𝑐 + 𝑑) (1 +

−1−(𝛾1+𝛾2+𝛾3)

𝛾1+𝛾2+𝛾3+3
) =

(𝑎 +  𝑏 + 𝑐 + 𝑑)
1

𝛾1+𝛾2+𝛾3+3
    (2.65) 

Next is to calculate 𝜇 for the new notable point and investigate how many of them may exist. 

3. Number of new notable points 

Now we solve (2.4, 2.34)) for 𝜇. 

(𝑥 − 𝑎)
2

= 𝜇(𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏)2    (3.1) 

2𝑥 = (𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝜇 [(𝑎 + 𝑏 +  𝑐 + 𝑑)(𝑑 −  𝑐)
2

] = 

= (𝑎 +  𝑏 + 𝑐 + 𝑑) (1 + 𝜇(𝑑 −  𝑐)
2

)   (3.2) 

Following [4], we introduce new quantities, some are repeated from (2.17-19): 

𝑠 = |𝑎|
2

+ |𝑏|
2

+ |𝑐|
2

+ |𝑑|
2
    (3.3) 
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𝑘1 = 𝑎𝑏 = 𝑐𝑑      (3.4) 

𝑘2 = 𝑎𝑐 = 𝑏𝑑      (3.5) 

𝑘3 = 𝑎𝑑 = 𝑏𝑐      (3.6) 

Start simplifying: 

(𝑥 − 𝑎)
2

= [
𝑎 + 𝑏 + 𝑐 + 𝑑

2
(1 + 𝜇(𝑑 −  𝑐)

2
) − 𝑎]

2

= 

=
1

4
(𝑠 + 4(𝑘1 + 𝑘2 + 𝑘3)) (1 + 𝜇(𝑑 −  𝑐)

2
)

2

+ |𝑎|
2

− |𝑎|
2

(1 + 𝜇(𝑑 − 𝑐)
2

) −

−(𝑘1 + 𝑘2 + 𝑘3) (1 + 𝜇(𝑑 −  𝑐)
2

) =
1

4
(𝑠 + 4(𝑘1 + 𝑘2 + 𝑘3)) (1 + 𝜇(𝑑 −  𝑐)

2
)

2

−

−|𝑎|
2

(𝜇(𝑑 −  𝑐)
2

) − (𝑘1 + 𝑘2 + 𝑘3) (1 + 𝜇(𝑑 −  𝑐)
2

)  (3.7) 

With (2.35): 

(𝑑 −  𝑐)
2

=
1

2
[(𝑏 −  𝑎)

2
+ (𝑑 −  𝑐)

2
] =

1

2
(𝑠 − 4𝑘1)  (3.8) 

Using (3.7-8): 

(𝑥 − 𝑎)
2

=
1

4
(𝑠 + 4(𝑘1 + 𝑘2 + 𝑘3)) (1 +

1

2
𝜇(𝑠 − 4𝑘1))

2

− |𝑎|
2

(
1

2
𝜇(𝑠 − 4𝑘1)) −

(𝑘1 + 𝑘2 + 𝑘3) (1 +
1

2
𝜇(𝑠 − 4𝑘1))   (3.9) 

Now the right side of (3.1) is expanded. A known identity: 

(𝑝 𝑥 𝑟) . (𝑠 𝑥 𝑡) = (𝑝. 𝑠) (𝑟. 𝑡) − (𝑝. 𝑡) (𝑟. 𝑠)    (3.10) 

where notation dot means scalar (dot) product. 

(𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏)
2

= 

= (𝑏 𝑥 𝑐). (𝑏 𝑥 𝑐) + (𝑏 𝑥 𝑐). (𝑐 𝑥 𝑑) + (𝑏 𝑥 𝑐). (𝑑 𝑥 𝑏) + 

+(𝑐 𝑥 𝑑). (𝑏 𝑥 𝑐) + (𝑐 𝑥 𝑑). (𝑐 𝑥 𝑑) + (𝑐 𝑥 𝑑). (𝑑 𝑥 𝑏) +    

+(𝑑 𝑥 𝑏). (𝑏 𝑥 𝑐) + (𝑑 𝑥 𝑏). (𝑐 𝑥 𝑑) + (𝑑 𝑥 𝑏). (𝑑 𝑥 𝑏)   (3.11) 

(𝑏 𝑥 𝑐). (𝑏 𝑥 𝑐) = (𝑏𝑏)(𝑐𝑐) − (𝑏𝑐)
2
   (3.12) 

(𝑐 𝑥 𝑑). (𝑐 𝑥 𝑑) = (𝑐𝑐)(𝑑𝑑) − (𝑐𝑑)
2
   (3.13) 

(𝑑 𝑥 𝑏). (𝑑 𝑥 𝑏) = (𝑑𝑑)(𝑏𝑏) − (𝑑𝑏)
2
   (3.14) 

(𝑏 𝑥 𝑐). (𝑐 𝑥 𝑑) = (𝑏𝑐)(𝑐𝑑) − (𝑑𝑏)(𝑐𝑐)   (3.15) 

(𝑏 𝑥 𝑐). (𝑑 𝑥 𝑏) = (𝑑𝑏)(𝑏𝑐) − (𝑐𝑑)(𝑏𝑏)   (3.16) 

(𝑐 𝑥 𝑑). (𝑑 𝑥 𝑏) = (𝑐𝑑)(𝑑𝑏) − (𝑏𝑐)(𝑑𝑑)   (3.17) 
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Using (3.4-6): 

(𝑏 𝑥 𝑐). (𝑏 𝑥 𝑐) = (𝑏𝑏)(𝑐𝑐) − 𝑘3
2
   (3.18) 

(𝑐 𝑥 𝑑). (𝑐 𝑥 𝑑) = (𝑐𝑐)(𝑑𝑑) − 𝑘1
2
   (3.19) 

(𝑑 𝑥 𝑏). (𝑑 𝑥 𝑏) = (𝑑𝑑)(𝑏𝑏) − 𝑘2
2
   (3.20) 

(𝑏 𝑥 𝑐). (𝑐 𝑥 𝑑) = 𝑘3𝑘1 − 𝑘2(𝑐𝑐)   (3.21) 

(𝑏 𝑥 𝑐). (𝑑 𝑥 𝑏) = 𝑘2𝑘3 − 𝑘1(𝑏𝑏)   (3.22) 

(𝑐 𝑥 𝑑). (𝑑 𝑥 𝑏) = 𝑘1𝑘2 − 𝑘3(𝑑𝑑)   (3.23) 

We introduce the new notation 𝑡: 

𝑡 = (𝑎𝑎)(𝑏𝑏) + (𝑏𝑏)(𝑐𝑐) + (𝑐𝑐)(𝑑𝑑) + (𝑑𝑑)(𝑎𝑎) + (𝑎𝑎)(𝑐𝑐) + (𝑏𝑏)(𝑑𝑑) (3.24) 

With (3.11,3.18-23): 

(𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏)
2

= |𝑏|
2

|𝑐|
2

− 𝑘3
2 + |𝑐|

2
|𝑑|

2
− 𝑘1

2 + |𝑑|
2

|𝑏|
2

− 𝑘2
2 + 

+2 [𝑘3𝑘1 − 𝑘2|𝑐|
2

] + 2 [𝑘2𝑘3 − 𝑘1|𝑏|
2

] + 2 [𝑘1𝑘2 − 𝑘3|𝑑|
2

] = 

= 𝑡 − |𝑎|
2

(𝑠 − |𝑎|
2

) − 𝑘1
2 − 𝑘2

2 − 𝑘3
2 + 

+2 [−𝑘2|𝑐|
2

] + 2 [−𝑘1|𝑏|
2

] + 2 [−𝑘3|𝑑|
2

]    (3.25) 

From (3.9) and (3.25): 

1

4
(𝑠 + 4(𝑘1 + 𝑘2 + 𝑘3)) (1 +

1

2
𝜇(𝑠 − 4𝑘1))

2

− |𝑎|
2

(
1

2
𝜇(𝑠 − 4𝑘1)) − (𝑘1 + 𝑘2 + 𝑘3) (1 +

1

2
𝜇(𝑠 − 4𝑘1)) = [𝑡 − |𝑎|

2
(𝑠 − |𝑎|

2
) − 𝑘1

2 − 𝑘2
2 − 𝑘3

2 + 2 [−𝑘2|𝑐|
2

− 𝑘1|𝑏|
2

− 𝑘3|𝑑|
2

]]

 (3.26) 

From (3.26) follows that the number of new notable points is two, one or zero. 

First, from (3.8): 

𝑠 − 4𝑘 ≠ 0     (3.27) 

otherwise 𝑐 and 𝑑 would coincide. Another possibility to reduce the number of solutions to 1 

is the following: 

𝑠 + 4(𝑘1 + 𝑘2 + 𝑘3) = 0    (3.28) 

From which it follows, (3.3-6): 

𝑎 + 𝑏 + 𝑐 + 𝑑 = 0     (3.29) 

That is, weight point and circumcenter coincide. This is the regular tetrahedron. In case of a 

regular tetrahedron, the new notable point coincides the center of the tetrahedron. In this case, 

number of new notable points equals to 1. 
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From [4] we can see a special case when the triangle has a 90 deg angle, and then there is one 

new notable point that coincides with the vertex at this angle. In that case, the center of the 

circumscribed circle fits into the section opposite to this vertex, Thales circle. In our present 

case, the corresponding situation is when the center of the circumscribed sphere coincides with 

the intersection of the Euler line with a face of the tetrahedron. 

In (2.44), the center of the circumscribed sphere corresponds to 

𝜇2 = 0      (3.30) 

In (2.64), intersection of the Euler line with one face is at 

𝜇4 =
−1−(𝛾1+𝛾2+𝛾3)

𝛾1+𝛾2+𝛾3+3

1

(𝑏− 𝑎)
2    (3.31) 

From 𝜇2 = 𝜇4,  

𝛾1 + 𝛾2 + 𝛾3 = −1     (3.32) 

Now we go back to (2.4) defining 𝜇: 

(𝑥2 − 𝑎)
2

= 𝜇2(𝑏 𝑥 𝑐 + 𝑐 𝑥 𝑑 + 𝑑 𝑥 𝑏)2   (3.33) 

From (3.30) and (3.33), 

𝑥2 = 𝑎      (3.34) 

In words, when the circumcenter fits into a face, then the new notable point is the vertex 

opposite to the face. This is analogous to the 2-dimensional case [4]. We have analyzed this 

case above in (2.57) and concluded that 

𝛾 = 𝛾1 = 𝛾2 = 𝛾3     (3.35) 

From (3.32) and (3.35): 

𝛾 = −
1

3
     (3.36) 

that is related to the bond angles in methane molecule. In case of identical vector lengths, 

cos 𝜑 = −
1

3
 where 𝜑 is the bond angle. Other cases are left for another publication. 

4. Further generalization possibilities 

The suggested general formulae for the notable point: 

[𝑚1(𝑥−𝑥1)]2

[𝑚2(𝑥2,…𝑥𝑛)]2
=

[𝑚1(𝑥−𝑥2)]2

[𝑚2(𝑥3,…𝑥𝑛,𝑥1)]2
= ⋯ =

[𝑚1(𝑥−𝑥𝑛)]2

[𝑚2(𝑥1,…𝑥𝑛−1)]2
  (4.1) 

where 𝑚1, 𝑚2 are some measures, not necessarily the same. This is also suitable for the case 

when number of vertices is greater than 4 for 3 dimensions, and for higher dimensional cases. 

5. Conclusions 

Our previously introduced notable point of plane triangles has been extended for tetrahedrons. 

We followed the lines of [4], with the details changed. Main statements are summarized here. 
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-  (2.2) generalizes the definition of the new notable point for tetrahedrons. 

-  (2.31) says that the new notable point is on a line on which the center of circumscribed 

sphere fits into. 

- If the tetrahedron has two non-intersecting edges that meet conditions (2.35) and (2.37-

38), then the new notable point fits into the Euler line, (2.36). 

- (3.26) says that the number of new notable points is two, one or zero. 

- Exactly one new notable point exists for a regular tetrahedron, that is identical to the 

center of the tetrahedron, (3.29). 

- Exactly one new notable point exists for a tetrahedron whose center of circumscribed 

sphere fits into the boundary of the tetrahedron, (3.34). This case, the new notable point 

is the vertex, opposite to the face on which the circumcenter is placed. 

- Definition of the new notable point is suggested for n dimensions, (4.1). 

We left open the problems of two and zero solutions, and an example for more than 3-

dimensional case and applications. These are intended to be detailed in a forthcoming 

publication. Applications may be expected in circuits and systems theory and in quantum 

communications. 

This paper can be interesting for physicists and chemists because there are some molecules 

having tetrahedral molecular geometry. 
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A1. Appendix: Circumcenter of a tetrahedron 

Here we express the circumcenter 𝑥2 of a tetrahedron abcd when the origin is the Monge point. 

(𝑥2 − 𝑎)2 = (𝑥2 − 𝑏)2    (A1.1) 

(𝑥2 − 𝑏)2 = (𝑥2 − 𝑐)2    (A1.2) 

(𝑥2 − 𝑐)2 = (𝑥2 − 𝑑)2    (A1.3) 

From (A1.1): 

(2𝑥2 − 𝑎 − 𝑏) (𝑎 − 𝑏) = 0    (A1.4) 

𝑎 ≠ 𝑏      (A1.5) 

2𝑥2 − 𝑎 − 𝑏 + 𝑧 = 0     (A1.6) 

𝑧(𝑎 − 𝑏) = 0     (A1.7) 

From (2.13), characterizing the Monge point as origin: 

𝑧 = 𝛼(𝑐 + 𝑑)     (A1.8) 

is a possible solution. (A1.6): 

2𝑥2 − 𝑎 − 𝑏 + 𝛼(𝑐 + 𝑑) = 0   (A1.9) 

Vertices are permuted: 

2𝑥2 − 𝑐 − 𝑑 + 𝛽(𝑎 + 𝑏) = 0   (A1.10) 

From (A1.9-10): 

−𝑎 − 𝑏 + 𝛼(𝑐 + 𝑑) + 𝑐 + 𝑑 − 𝛽(𝑎 + 𝑏) = 0  (A1.11) 

Vectors (𝑎 + 𝑏) and (𝑐 + 𝑑) are linearly independent: 

𝛼 = 𝛽 = −1     (A1.12) 

Then from (A1.9): 

𝑥2 =
1

2
(𝑎 + 𝑏 + 𝑐 + 𝑑)    (A1.13) 

 

A.2. Appendix: Conditions (2.27-28) 

(𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑) = 2𝑐 ((𝑐 − 𝑑)𝑑) − 𝑑 ((𝑐 − 𝑑)2𝑐)  (A2.1) 
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Expanding (2.27): 

(𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑) = 𝛼1(𝑐 + 𝑑) + 𝛼1
′ (𝑐 − 𝑑)   (A2.2) 

New notations: 

2(𝑐 − 𝑑)𝑑 = 𝛼    (A2.3) 

(𝑐 − 𝑑)2𝑐 = 𝛽    (A2.4) 

 

𝛼1 + 𝛼1
′ =  𝛼     (A2.5) 

−𝛼1 + 𝛼1
′ =  𝛽    (A2.6) 

𝛼1
′ = (𝑐 − 𝑑)𝑑 + (𝑐 − 𝑑)2𝑐 = 0    (A2.7) 

|𝑐|
2

= |𝑑|
2
     (A2.8) 

(𝑐 − 𝑑) 𝑥 (2𝑐 𝑥 𝑑) = 𝛼1(𝑐 + 𝑑)    (A2.9) 

Similarly, for (2.28): 

|𝑎|
2

= |𝑏|
2
     (A2.10) 
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