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Abstract: The Poincaré disk model played an important role in the acceptance and development of hyperbolic geometry.
Although exceptionally useful, the pedagogical value of the model can be further enhanced via experimentation in a
dynamic geometry environment. The focus of this article is on the creation of custom tools in GeoGebra for constructing
hyperbolic lines and circles in the Poincaré disk. In an effort to make this material accessible to a wider audience, the
necessary mathematics is also included.
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Introduction

Euclid’s Elements was a comprehensive summary of the mathematics known to the ancient Greeks and remained the
definitive textbook on geometry for more than 20 centuries. His postulates laid bare many of the assumptions made by
the Greek geometers and the fifth postulate, called the parallel postulate, has been of particular interest. All attempts
to prove that the fifth postulate was dependent on the first four ended in failure and most of these efforts contributed
little to the evolution of geometry. Carl Friedrich Gauss may have been the first mathematician to recognize the
independence of the fifth postulate, but he never published his results [7]. Models of hyperbolic geometry came 30
years later and were used to establish the relative consistency of Euclidean and hyperbolic geometry and to prove the
independence of the fifth postulate. The Poincaré disk model was originally developed by the Italian mathematician
Eugenio Beltrami in 1868 and was reintroduced and popularized by French mathematician Henri Poincaré in 1881.
The model is conformal and provides a link to several other branches of mathematics including complex function
theory and differential equations. The Poincaré disk model entered the popular culture via the work of the Dutch
graphics artist M.C. Escher.

The Poincaré disk and other models made hyperbolic geometry easier to visualize and played a role in its gaining
acceptance. Although the models are helpful, students can benefit from the use of dynamic geometry software which
provides an environment suitable for experimentation. At present there are several software packages available for
this purpose including Cinderella [3] and NonEuclid [2] which both provide tools for working with the Poincaré disk
model. These tools are useful, but they are not as well known as GeoGebra [9] and it is natural to wonder whether
or not the same tasks could be performed in GeoGebra. Currently, GeoGebra does not provide any built in tools but
several custom tools are available on GeoGebraTube. Some of the best include those developed by Maline Christersson
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Figure 1.1: Lines in the Poincaré disk model are either open diameters or open circular arcs orthogonal
to �. Each line is shown passing through points A and B and with their ideal endpoints P and Q.

[4] and Stehpan Szydlik [10]. However, both of these tools have some defects. For example, their hyperbolic line
tools do not work properly in all cases. The emphasis in this paper is on learning how to create robust custom tools in
GeoGebra for constructing hyperbolic lines and circles in the Poincaré disk model. In an effort to make this material
accessible to a wider audience, the mathematics needed to construct the tools will also be provided.

Poincaré disk model

The Poincaré disk model begins with a circle � with center O in the Euclidean plane. Points in this model are points
in the interior of �. Points on � are called ideal points. They are not included in the model and are considered to
be infinitely far away from points in the interior. There are two types of lines in the Poincaré disk model. The first
type are the open diameters of � and the second type are the open circular arcs orthogonal to �. Taken together, the
two types of lines are called p-lines and they are geodesics. It is worth noting that a diameter may be regarded as the
limiting case of a circle whose radius is approaching infinity.
Circles orthogonal to � can be constructed in several different ways. One method is to use the following result from
Euclidean geometry which makes use of tangents [11].

Definition 1.1 Two circles are orthogonal if their tangent lines are perpendicular at the point of intersection.

Theorem 1.1 Let c be a circle with center O and c0 be a circle with center O0 and suppose the circles intersect at
points A and B. Then the circles are orthogonal if and only if the tangent lines to c0 at A and B intersect at O and the
tangent lines to c at A and B intersect at O0.
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Another method involves using inversive geometry. In this approach, circles orthogonal to � are constructed using
inverse points [5, 6, 7].

Definition 1.2 The inverse of a point P with respect to a circle c with center at point O and radius r is the unique
point P 0 on the ray OP such that OP ·OP 0 = r2.

Theorem 1.2 Let c be a circle with center O and radius r and P be a point that is not on c and that is not the center
of c. Define P 0 as the inverse of P with respect to c. Suppose a circle c0 passes through point P . Then the circles c
and c0 are orthogonal if and only if c0 passes through P 0.

Angles in the Poincaré disk model are defined as the Euclidean angle between tangents. The fact that angles are
preserved is considered to be an advantage of the disk model over other models of hyperbolic geometry.
Distance is more complicated in the Poincaré disk model and is significantly distorted. The ratio of distances is also
distorted. However, the cross ratio defined as a ratio of ratios of distances is preserved [7].
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Figure 1.2: The angle between two hyperbolic lines is defined as the Euclidean angle between the
tangents at their point of intersection. The angle ACB is defined as the Euclidean angle A0CB0.

Definition 1.3 Suppose that A and B are any two points in the Poincaré disk and let P and Q be the ideal endpoints
of the line that connects them. Then the cross ratio is defined as

(AB,PQ) =

AP

AQ
÷ BP

BQ

where the AP , AQ, BP and BQ are Euclidean lengths.

Theorem 1.3 Let c be a circle with center O. If A , B, P , Q are four distinct points different from O and A0, B0, P 0,
Q0 are there inverses with respect to c, then their cross ratio is preserved, (A0B0, P 0Q0

) = (AB,PQ).

Definition 1.4 The distance between points A and B in the Poincaré disk model is defined in terms of the cross ratio
as d(A,B) = | ln(AB,PQ)|.

A hyperbolic circle with center A and radius r is defined as the set of all points X in the Poincaré disk such that
d(A,X) = r. The relationship between hyperbolic and Euclidean circles in the Poincaré disk model is captured in the
following theorem [1, 7].

Theorem 1.4 Hyperbolic circles in the Poincaré disk model are also Euclidean circles but their centers are not the
same unless the hyperbolic circle is centered at O.

An isometry is a distance preserving transformation. There are four isometries in the hyperbolic plane including
hyperbolic reflections, hyperbolic translations, hyperbolic rotations and the parabolic isometry which has no Euclidean
counterpart. In this paper, we focus on the hyperbolic reflections [8] since they are required for the construction of the
hyperbolic circle.

Definition 1.5 A hyperbolic reflection is either a Euclidean reflection across a diameter or an inversion with respect
to a circular arc orthogonal to �.

Theorem 1.5 Hyperbolic reflections are isometries. If points A0, B0 are reflections of points A, B about a hyperbolic
line, then d(A0, B0

) = d(A,B).

Hyperbolic line tool

Although in theory the defining circle � can be any circle, for the purpose of creating custom tools in GeoGebra for
constructing hyperbolic lines and circles, we will take � to be the unit circle. When constructing a hyperbolic line
passing through two points, we must consider several possibilities depending on whether or not the points lie on a
diameter of � and whether the points are located in the interior or on the boundary of �. These possibilities can be
divided into three cases; diameters, arcs and ideal arcs.
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Figure 1.3: A hyperbolic circle in the Poincaré disk is also a Euclidean circle. The hyperbolic center
is offset towards the boundary of the disk since distances near the boundary are larger.

Figure 1.4: Hyperbolic reflections. (a) If the hyperbolic line is a diameter of �, the hyperbolic
reflection is simply the Euclidean reflection about the diameter. (b) If the hyperbolic line is a circular
arc orthogonal to �, then the hyperbolic reflection is an inversion about the hyperbolic line.
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Figure 1.5: Use an arc of circle c1 to approximate the diameter passing through points A and B.
The circle c1 is tangent to the diameter at O and its center O1 lies on the perpendicular bisector of
the diameter. Define I1 as one of the intersections of the diameter and the defining circle �. Locate
O1 by rotating I1 about O counterclockwise by 90 degrees and then dilating by a factor equal to the
radius of c1. Find the intersections P1 and Q1 of c1 and � and use them as the endpoints of the
circular arc a1. Note that the circle c1 is shown with a radius of 2 in order to make the details of the
construction easier to see. When the radius is set equal to 1000, the arc a1 appears as a straight line.

Diameters

If A and B are collinear with O, then the hyperbolic line passing through A and B is a diameter of �. Although
diameters are simple in theory, there are some complications when implementing this case in GeoGebra since in the
end all three cases will be combined into a single custom tool. In an ideal world, we could use the Segment [ <Point >,
<Point >] command to construct the diameter. Unfortunately, the If [ <Condition >, <Then >, <Else >] command
needed to combine the cases requires that the <Then >and <Else >objects be of the same type. Since segments and
arcs do not meet this criterion, the diameter will be approximated using the small arc of a large circle as shown in
Figure 1.5.
Begin the construction by creating � using the Circle[ <Point >, <Radius Number >] and two points inside � using
the PointIn[ <Region >] command

// Poincarè disk --------------
// Construct the unit circle �
// Create point A inside �
// Create point B inside �
// ----------------------------

�: Circle[(0,0), 1]
A: PointIn[Circle[(0,0), 1]]
B: PointIn[Circle[(0, 0), 1]]

Then construct the approximate diameter. Note that the Intersect [ ] command has several forms and in the form used
below, the third argument is the index of the intersection.
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Figure 1.6: Construct the hyperbolic line for the case in which points A and B are not collinear with
O and at least one of the points is in the interior of �. Begin by determining the inverses of A and B
with respect to �. If A is in the interior of �, then by Theorem 2 the circle c2 passing through points
A, A0 and B is orthogonal to �. If A is on � then A and A0 coincide (points on the circle of inversion
are invariant) and c2 can be constructed using points A, B and B0. Determine the intersections P2

and Q2 of c2 and � and use them as the endpoints of circular arc a2. Locate an additional point M2

on arc a2. If A is on �, choose M2 = B , otherwise choose M2 = A. Finally construct arc a2 using
points P2, M2 and Q2.

// Diameters-----------------------------------
// Approximate the diameter using the small arc
// of a large circle
// Locate an endpoint I1 of the diameter
// Use I1 to locate the center O1 of circle c1
// Construct circle c1
// Locate endpoint P1 of arc a1
// Locate endpoint Q1 of arc a1
// Construct circular arc a1
//---------------------------------------------

I1: Intersect[Circle[(0,0), 1], Line[A, B],1]
O1: 1000 Rotate[I1, 90�]
c1: Circle[O1, 1000]
P1: Intersect[Circle[(0,0), 1], c1, 1]
Q1: Intersect[Circle[(0, 0), 1], c1, 2]
a1: CircumcircularArc[P1, (0, 0), Q1]

If you study the GeoGebra commands in this section, you will notice that � is purely decorative and is included only
to make the unit circle visible during the construction process. If the unit circle is required on the right hand side of
any command, it is created using Circle [(0,0), 1] command. If the decorative � were used instead, then the final tool
would require the user to input two points and the circle. In other words, a little extra effort at this stage will result in
a tool that requires two inputs instead of three.

Arcs

If A and B are not collinear with O, then the hyperbolic line passing through A and B is the open arc of a circle
orthogonal to �. If in addition, at least one of the points lies in the interior of �, then the hyperbolic line can be
constructed using inversive geometry as described in Figure 1.6.
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Prepare for this construction by hiding all of the objects from the previous construction except for points A and B and
the defining circle �. Then construct the circular arc using the GeoGebra code provided below. Note the use of the
Reflect[ <Object >, <Circle >] command to determine the inverses of A and B with respect to � and the Length[
<Object >] command to determine whether or not A is on �. The If[ <Condition >, <Then >, <Else >] command
is used to construct the circle passing through points A and B and orthogonal to �. If A is on �, then the circle is
constructed using A, B and B0, otherwise it is constructed using points A , A0 and B.

// Arcs----------------------------------------------
// Construct a circular arc using Theorem 2
// Determine the inverse of point A with respect to �
// Determine the inverse of point B with respect to �
// Construct circle c2 passing through A and B and
// orthogonal to � (if A is on �, use points A, B, B0,
// otherwise use points A, B, A0)
// Locate endpoint P2 of arc a2
// Locate endpoint Q2 of arc a2
// Locate an additional point M2 on arc a2
// (if A is on �, set M2 = B, otherwise set M2 = A)
// Construct circular arc a2 using points P2, M2 and Q2
//-----------------------------------------------------

A’: Reflect[A, Circle[(0, 0), 1]]
B’: Reflect[B, Circle[(0, 0), 1]]
c2: If[Length[A] == 1, Circle[A, B, B’], Circle[A, B, A’]]
P2: Intersect[c2, Circle[(0,0), 1], 1]
Q2: Intersect[c2, Circle[(0, 0), 1], 2]
M2: If[Length[A] == 1, B, A]
a2: CircumcircularArc[P2, M2, Q2]

Ideal arcs

Consider the situation for which A and B are not collinear with O and both points lie on �. In this case, the previous
construction fails since both points are invariant under inversion about � and inversion cannot be used to obtain the
third point needed to construct the circle. The solution is to use a result from Euclidean geometry as illustrated in
Figure 1.7.
Prepare for this construction by hiding all of the objects from the previous constructions except for points A and B
and the defining circle �. Then construct arc a3 using the GeoGebra code provided below. Note that the most obvious
method for constructing the tangents would be to use the Tangent[ <Point >, <Conic >] command. However if this
command is used, the final hyperbolic line tool will fail when imported into another GeoGebra file (most likely due
to the fact that the Tangent command was designed to construct multiple tangents from a point to a conic). To work
around this problem, unique tangents to � at A and B are constructed using the fact that the tangent to a circle is
perpendicular to the radius of the circle.

// Ideal arcs-----------------------------------------
// Construct ideal arcs using Theorem 1
// Construct tangent t3a to � at point A
// Construct tangent t3b to � at point B
// Locate the center O3 of circle c3
// (intersection of the tangents)
// Construct circle c3 passing through A and B
// and orthogonal to �
// Locate an additional point M3 on arc a3 by finding
// the intersection of circle c3 with the ray from O3
// to the midpoint of segment AB
// Construct circular arc a3 using points A, M3, B
// ---------------------------------------------------
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Figure 1.7: Construct the hyperbolic line passing through points A and B for the case in which A
and B are not collinear with O and both points lie on �. Begin by constructing tangents t3a and t3b
to � at points A and B respectively. By Theorem 1, the tangents intersect at the center O3 of a circle
c3 which passes through A and B and is orthogonal to �. Construct c3 using O3 as the center and
either point A or B. Use A and B as the endpoints of arc a3. Determine an additional point M3 on
arc a3 by constructing a ray from O3 to the midpoint of segment AB and locating the intersection of
this ray with c3. Then use points A, M3, B to construct arc a3.

t3a: PerpendicularLine[A, Line[(0, 0), A]]
t3b: PerpendicularLine[B, Line[(0, 0), B]]
O3: Intersect[t3a, t3b]
c3: Circle[O3, A]
M3: Intersect[c3, Ray[O3, Midpoint[A, B]]]
a3: CircumcircularArc[A, M3, B]

Create the hyperbolic line tool

Use the Boolean variables isDiameter and isIdeal to distinguish between the three cases. The isDiameter variable
tests whether or not points A and B are collinear with O and isIdeal tests whether or not both A and B are on �.
Then use nested If[ <Condition >, <Then >, <Else >] commands to combine the three cases. Note that in traditional
programming languages, only the objects which are needed would be constructed. In this construction, however, the
objects used in all three cases are always created and the nested If statement is used to display the valid object.

// Combine cases-----------------------------------------
// Boolean isDiameter is true if A, B and O are collinear,
// otherwise false
// Boolean isIdeal is true if A and B are on �,
// otherwise false
// Combine diameters, arcs and ideal arcs into a single
// hyperbolic line command
//-------------------------------------------------------

isDiameter: AreCollinear[(0,0), A, B]
isIdeal: Length[A] == 1 & Length[B] == 1
pline: If[isDiameter, a1, If[isIdeal, a3, a2]]
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We are finally ready to create a custom tool for creating hyperbolic lines in the Poincaré model. Be sure to hide all of
the objects except A, B and pline. For pline, it is best to turn off the label. Then go to the main menu in GeoGebra
and select Tools/Create New Tool. In the Output Objects tab, use the drop-down menu to select pline.

Use the Next button to move to the Input Objects tab and use the drop-down menu to select points A and B.

Use the Next button to move to the Name & Icon tab and provide a name for the tool and a command name. Provide a
tool tip such as “Select two points” to provide users with information on how to use the tool.
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Although it is not necessary, it is possible to create an icon. If you decide to do this, consider using a separate GeoGebra
Worksheet to create a suitable image and then use screen capturing software such as Jing (free) or SnagIt (commercial)
to create an image file. Then press the Icon button and navigate to the image file and press Open. Press the Finish
button and you now have a tool for creating lines in the disk model.

This custom tool can be used both as a tool and as the command Pline[ <Point >, <Point >] in the Input bar. In
addition, the custom tool can be saved to your computer as GGT file and then imported into other GeoGebra files.
To do this, select Tools/Manage Tools, then select Save As and press Save. Then open a new GeoGebra file and use
File/Open to import the GGT file. Be sure to do this prior to beginning the hyperbolic circle construction, since this
approach hides all of the details of construction of the hyperbolic line tool and allows you to focus on constructing the
hyperbolic circle. This works since all of the details of the construction are contained in the GGT file and they are not
displayed in the Algebra window.

Hyperbolic circle tool

Hyperbolic circles in the Poincaré disk model are also Euclidean circles but in general the hyperbolic center is not the
same as the Euclidean center. The key to constructing a hyperbolic circle with center at points A and passing through
point B is to locate its Euclidean center C and then construct a Euclidean circle with center C passing through B. The
construction of the hyperbolic circle is broken into three cases depending on whether or not A = O and whether or
not the A and B are collinear with O.

Hyperbolic center at the origin

If A = O, then by Theorem 4 the Euclidean center of the circle is also at O and the hyperbolic circle can be constructed
using a Euclidean circle centered at O and passing through B . Begin the construction by creating � and two points
inside �.
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Figure 1.8: Construction of the hyperbolic circle c2 with hyperbolic center A 6= O and passing
through B for the case in which points A, B and O are not collinear. All hyperbolic lines passing
through the center A are orthogonal to the circle. Since line OA is one such line, it is orthogonal to
c2 and the center of c2 must lie on this line (if a line cuts a circle orthogonally, the line must be a
diameter of the circle). In addition, c2 is orthogonal to the hyperbolic line pAB (circular arc) passing
through points A and B . By Theorem 1, the Euclidean center O2 of c2 must lie on the tangent tB to
the hyperbolic line pAB at point B . Thus the Euclidean center O2 of c2 is located at the intersection
of line OA and tangent tB. The hyperbolic circle c2 can then be constructed using a Euclidean circle
centered at O2 and passing through B.

// Poincarè disk --------------
// Construct the unit circle �
// Create point A inside �
// Create point B inside �
// ----------------------------

�: Circle[(0, 0), 1]
A: PointIn[Circle[(0, 0), 1]]
B: PointIn[Circle[(0, 0), 1]]

Then construct the circle.

// Center at the origin -------------------------
// Construct hyperbolic circle c1 using Theorem 4
// ----------------------------------------------

c1: Circle[A, B]

Points not on a diameter

If A 6= O and points A and B are not collinear with O, then the hyperbolic circle centered at A and passing through
B can be constructed using the fact that every hyperbolic line passing through A must be orthogonal to the circle as
explained in Figure 1.8.

Begin by hiding c1 from the previous case and then implement the construction using the following GeoGebra code.
Although the most obvious way to construct the tangent is to use the Tangent[ <Point >, <Conic >] command, we
forego this approach since the command fails for some locations of B on � (returns undefined, most likely since the
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Figure 1.9: Construction of the hyperbolic circle c3 with hyperbolic center A and passing through
B for the case in which A 6= O and A and B are collinear with O. Begin by determining the inverse
of A with respect to � and then construct circle ca passing through A and A0 and centered at the
midpoint of segment AA0. By Theorem 2, ca is orthogonal to � and is therefore a hyperbolic line in
the Poincaré disk. Define A00 and B00 as the inverses of A and B with respect to ca (be careful since
in all previous constructions, the inverses have been with respect to � ). To finish the construction,
we use the distance metric. By Theorem 5, d(A00, B00

) = d(A,B). Furthermore since A is invariant
after inversion with respect to ca , we obtain d(A,B00

) = d(A,B). Hence, the hyperbolic circle c3
can be constructed using a Euclidean circle centered at the midpoint of segment BB00 and passing
through the point B.

numerical algorithms occasionally fail to find the tangent at the endpoint of an arc). The approach taken here is to use
the fact that the tangent to a circle is perpendicular to its radius.

// Points not on a diameter ----------------------------
// Construct hyperbolic circle c2 using Theorem 1
// Construct line OA
// Construct hyperbolic line pAB through A and B
// Construct tangent tB to the hyperbolic line pAB at B
// Locate the center O2 of hyperbolic circle c2
// (intersection of line OA and tangent tB)
// Construct the hyperbolic circle c2
// -----------------------------------------------------

OA: Line[(0,0), A]
pAB: Pline[A, B]
tB: PerpendicularLine[B, Line[Center[pAB], B]]
O2: Intersect[OA, tB]
c2: Circle[O2, B]

Points on a diameter

If A 6= O and points A, B and O are collinear, then the previous construction fails since the intersection of OA and
tB is no longer defined. In this case the circle can be constructed using the distance metric as explained in Figure 1.9.
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Begin by hiding all of the objects from the previous construction except points A and B and the defining circle � and
then move the A and B onto a diameter. Use the following GeoGebra code to implement the construction.

// Points on a diameter -------------------------------
// Construct hyperbolic circle c using Theorems 2 and 5
// Determine the inverse of point A with respect to �
// Construct circle ca through points A and A0 centered
// at midpoint of segment AA0

// Determine the inverse of point B with respect to ca
// Construct the hyperbolic circle c3
// ----------------------------------------------------

A’: Reflect[A, Circle[(0, 0), 1]]
ca: Circle[Midpoint[A, A’], A]
B’’: Reflect[B, ca]
c3: Circle[Midpoint[B, B’’], B]

Create the hyperbolic circle tool

Combine the three cases by defining the Boolean values Origin and Collinear and using nested If[ <Condition >,
<Then >, <Else >] statements.

// Combine cases----------------------------------------
// Boolean isOrigin is true if A = O and false otherwise
// Boolean isCollinear is true if A, B and O are
// collinear and false otherwise
// Combine cases into a single hyperbolic circle command
//------------------------------------------------------

isOrigin: A == (0,0)
isCollinear = AreCollinear[(0, 0), A, B]
pcircle: If[isOrigin, c1, If[isCollinear, c3, c2]]

Hide all of the objects except A, B and pcircle and turn off the label for pcircle. Then use Tools/Create New Tool to
create a custom tool, Pcircle, which accepts points A and B as inputs and outputs pcircle. Provide a helpful tooltip
such as “Select center, then point” and create an icon for the tool if you wish.

Conclusion

The primary focus of this paper has been on the construction of custom tools in GeoGebra for creating hyperbolic
lines and hyperbolic circles in the Poincaré disk model. The hyperbolic line tool is robust and works well in all cases
including when points A and B are in the interior of �, on the boundary of � and when they are on the same diameter.
The hyperbolic circle is similarly robust and works for the full range of positions of the center point A and point B
within and on �. Tools for creating hyperbolic segments and rays can be constructed in a manner similar to that of
hyperbolic lines with some modifications. If the reader wishes to create a more complete suite of tools for working
with the Poincaré disk, then it is worth noting that the construction of hyperbolic perpendicular bisectors, hyperbolic
midpoints, hyperbolic perpendicular lines and hyperbolic angle bisectors mimic their corresponding Euclidean compass
and straightedge constructions.
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REFERENCES

1. J. W. Anderson, Hyperbolic Geometry. Springer, 2013.

2. J. Castellanos, NonEuclid: Interactive Javascript Software for Creating Straightedge and Collapsible Compass Constructions
in the Disk Model of Hyperbolic Geometry.
URL: https://www.cs.unm.edu/˜joel/NonEuclid/NonEuclid.html.

3. Cinderella 2.0.
URL: http://www.cinderella.de/.

4. M. Christersson. GeoGebra Constructions in the Disc.
URL: http://www.malinc.se/math/noneuclidean/discen.php.

5. C.W. Dodge, Euclidean geometry and transformations, Dover Publications, 2004.

6. C. Goodman-Strauss, Compass and Straightedge in the Disk, American Mathematical Monthly, 108 (2001), 38-49.

7. M.J. Greenberg, Euclidean and noneuclidean geometry: Development and History. W.H. Freeman and Company, 1993.

8. M. Harvey, Geometry Illuminated: An Illustrated Introduction to Euclidean and Hyperbolic Plane Geometry, MAA Press,
2015.

9. M. Hohenwarter. GeoGebra 5.0.
URL: http://www.geogebra.org/.

10. S. Szydlik. Hyperbolic Geometry Tools for GeoGebra.
URL: http://www.uwosh.edu/faculty staff/szydliks/howtoggb.shtml.

11. H. E. Wolfe, Introduction to Non-Euclidean Geometry, Dover Publications, 2012.


