PABSON SEE PRE BOARD EXAM - 2077

Time: 3 Hrs.

Full Marks: 100

Subject: Additional Mathematics (Optional - I)

Canditates are required to write their answers according to the instructions given. Attempt all the questions.

Group"**A**"
$$5 \times (1+1) = 10$$

- (a) Define constant function with an example.
 (b) If 3, a, 27 and 81 are in G.P., find the value of a.
- 2. (a) What is the point of discontinuity of a function $f(x) = \frac{x+1}{x-1}$?
 - (b) Find the value of k if $\begin{vmatrix} 4 & 1+k \\ 6 & 5 \end{vmatrix} = \begin{vmatrix} 2 & 4 \\ k & 3 \end{vmatrix}$
- 3. (a) If the lines $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ are parallel to each other, then show that $a_1b_2 = a_2b_1$.
 - (b) If the intersection plane is parallel to the axis of cone then what conic does it form?
- 4. (a) Write the formula for $2 \sin A \cdot \sin B$.
 - (b) Solve: $3 \tan^2 \theta 1 = 0 \ [0^\circ \le \theta \le 90^\circ]$
- 5. (a) If $\vec{a} = \vec{i} 2\vec{j}$ and $\vec{b} = -6\vec{i} 3\vec{j}$, then prove that \vec{a} is perpendicular to \vec{b} .
 - (b) If a point P(-4, 3a 5) has its image P'(7 a, 4) under the reflection in the line y = -x, find the value of a.

Group"B"
$$[13 \times 2 = 26]$$

- 6. (a) If g(x+5) = x + 20 then find g(x) and gog(x).
 - (b) If $x \sqrt{2}$ is a factor of $ax^3 6x + 2\sqrt{2}$, then find the value of a.
 - (c) What is the common difference of an AP whose first term and sum of first 15 terms are 100 and 450 respectively?
- 7. (a) If $P = \begin{bmatrix} 2 & -1 \\ -4 & 5 \end{bmatrix}$ and $Q = \begin{bmatrix} -3 \\ 3 \end{bmatrix}$, find the matrix R such that PR = Q.
 - (b) According to Cramer's rule, find the values of D_x and D_y for x + y = 5 and x y = 3.
- 8. (a) If the acute angle between two straight lines 2x y + 6 = 0 and 3x + ky + 4 = 0 is 45° , find the value of k.
 - (b) Show that the lines $y + \sqrt{3}x + 4 = 0$ and $x \sqrt{3}y = 5$ are perpendicular to each other.
- 9. (a) Prove : $\cot 2A + \tan A = \operatorname{cosec} 2A$

(b) Prove:
$$2\cos 105^\circ$$
. $\cos 15^\circ + \frac{1}{2} = 0$

(c) Solve:
$$\tan^2 \frac{\theta}{3} - \frac{2}{\sqrt{3}} \tan \frac{\theta}{3} + \frac{1}{2} = 0$$

10. (a) If $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 6$, $|\vec{b}| = 7$ and $|\vec{c}| = \sqrt{127}$, find the angle between \vec{a} and \vec{b} .

- (b) In $\triangle ABC, \overrightarrow{OA} = 2\vec{i} + 3\vec{j}, \overrightarrow{OB} = \vec{i} 2\vec{j}$ and position vector of centroid G of $\triangle ABC$ is $\overrightarrow{OG} = 3\vec{i} + 4\vec{j}$, then find \overrightarrow{OC} .
- (c) In a data, the first quartile and the quartile deviation are 17.5 and 20 respectively. Find the third quartile and the co-officient of quartile deviation.

Group"C"
$$[11 \times 4 = 44]$$

- 11. Solve: $3x^3 13x^2 + 16 = 0$
- 12. The sum of three numbers in AP is 18. If 1, 2 and 7 are added to them respectively, the numbers will be in G.P., then find the numbers.

13. If

$$f(x) = \begin{cases} x+2 & \text{if } 1 \le x < 0\\ 3x-2 & \text{if } x \ge 2 \end{cases}$$

Then,

- (a) Find f(x) if x = 1.99.
- (b) Find f(x) if x = 2.01.
- (c) Is $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x)$?
- (d) Is f(x) continuous at x = 2?
- 14. Solve by matrix method: $4x \frac{9}{y} + 11 = 0$ and $\frac{6}{y} 3x = 8$.
- 15. Find the single equation of the pair of straight lines passing through (3, -1) and perpendicular to the pair of lines represented by $x^2 xy 2y^2 = 0$.
- 16. Prove that: $\sin^4 \frac{\pi^c}{8} + \sin^4 \frac{3\pi^c}{8} + \sin^4 \frac{5\pi^c}{8} + \sin^4 \frac{7\pi^c}{8} = \frac{3}{2}$ 17. If $A + B + C = \pi^c$ then prove that: $\frac{\cos A}{\sin B \cdot \sin C} + \frac{\cos B}{\sin C \sin A} + \frac{\sin C}{\sin A \sin B}$
- 18. A ladder of length 20 feet is leaned on the top of a wall which makes an angle of 60° with the ground. The ladder slides 7.32 feet below the top along the wall, find the new angle that the ladder makes with ground.
- 19. Find the inversion point of the given point A(5,4) with respect to the circle $x^2 + y^2 6x 4y + 9 = 0$.

20. Find the mean deviation from median and its coefficient from the following frequency table.

Marks	$0 \le x < 10$	$10 \le x < 20$	$20 \le x < 30$	$30 \le x < 40$	$40 \le x < 50$
Number of students	5	2	9	2	2

21. Compute standard deviation and it's coefficient from the the following data.

Marks	0 - 10	0 - 20	0 - 30	0 - 40	0 - 50
Number of students	9	15	19	31	40

 $[4 \times 5 = 20]$

22. Maximize and minimise the the objective function F = 6x + 5y subject to the constraints $x + y \le 6, x - y \ge -2, x \ge 0$ and $y \ge 0$.

- 23. Find the the equation of a circle with centre (3,2) and passing through the centre of the circle $x^2 + y^2 2x + 4y 4 = 0$.
- 24. Prove by vector method that the midpoint of hypotenuse of a right angle triangle is equidistant from its vertices.
- 25. E denotes enlargement [(0,0),2] and R denotes the reflection on the line y = -x. If ΔPQR with vertices P(-4,6), Q(-6,-10) and R(12,-8) mapped to form $\Delta P''Q''R''$ under the enlargement EoR then find the coordinates of $\Delta P''Q''R''$ and plot the the triangles on the same graph.