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1   Introduction 

Recent research on microwave reflectometers in electncal engmeenng  [1] led naturally 
to the following geometne extremum problem. A reflectometer can be desenbed by the 

equation 

ß  X 

(1) y=a+ 1  -7 X 

Der Beitmg beginnt mit der Besehteibung eines konkreten techtrischen P*t>MetBs und 

l^tor mathematischen FcftnnÜeriing, Statt die zugehörige Pr&gesteltang amschliessend 

einfach  zu  lösen,  gehen  die  Autoren  den  Verbindungen  Innerhalb  der Mathematik 

gemö» nach; Sie Uta« te diesem Ml ~ ttheimschenderweise — to die -dassisebe 

I^tecksgeoinetrie*  wm Bttier-Germkm Bin sehdnes  Beispiel ftr die  bdfcmht&ndm 

Ife^Ii^lwiil-nngen fwiacbaii der Mathematik und ihren Anwendungen« mt 
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where x denotes the reflection coefficient of the measured device, y is the value read off 
the reflectometer, and a, ß and 7 represent the imperfections of the measuring instrument. 

All these quantities are complex numbers. 

Equation (1) expresses the fact that the actual and the measured parameters usually differ 

due to the imperfections in the reflectometer. Consequently, the parameters a, ß and 7 
have to be determined before the measurement. This step is carried out using (three) 

devices whose reflection coefficients xx, i 1,2,3 are assumed to be known, and who 

yield values yx,  i   1,2,3. Thus, the pairs (xx, yx), i   1,2,3 can be used to eliminate 

a,ß and 7 of (1). We easily obtain 

(2) y-yi. V3-y2    x-xi  X3-X2 

y-y2 y3-yx x-x2 x3-xx 
In practice the reflection coefficients of the above mentioned known devices may differ 

slightly from the assumed values, resulting in a measurement ercor. One possibihty for 

reducing this effect is to keep the sensitivities expressed by (3a -c) small. The equations 

(3a - c) are derived from equation (2): 

x -x2 x --x3 
(3a) 

dxx xx-x3 X\ -x2 
dx x-x3 x --xx 

Ob) 
dx2 x2-xx x2 -x3 
dx x — xx x --x2 

(3c) 
dx3 x3-x2 x3-xx 

A possible way of minimizing the sensitivities is to make them equal and then to find 
the minimum: 

dx dx dx 
(4) 

dxx dx2 dx3 

The same minimum can be achieved by minimizing the sum ofthe sensitivities of (3a-c). 

Thus, the equations (3a - c) and (4) yield 

x -xx x-x2 x -x3 
(5) 

x2-x3 x3 -xx xx -x2 
After a change in the notation and by using planar vectors instead of complex numbers we 

can formulate our result about the Euler line of triangles as follows. In the forthcoming 

discussion XY denotes the closed line segment determined by the points X and Y of 
the (Euchdean) plane and also the length of this segment. 

 

Theorem Let ABC be a triangle with vertices A,B and C. IfP is a point in the plane 

of ABC with the property that |^   ^  ^, then P  is colhnear with the centroid, 
the  orthocenter and the  center of the  circumscribed circle of ABC; that is,  P  lies on 

the Euler line of ABC. Moreover, the  number of points P  with  ^  j^   ^ is 2 

or  1    or 0 according  to whether AB C  is,  respectively, an acute triangle different from 
a regulär triangle, a regulär triangle or a right triangle, or an obtuse triangle. Finally, IA    

AC        ^§ > -75  w/fA equality only if ABC is a regulär triangle. 
PB 
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2   Proof of the Theorem 

We choose the origin to be at the orthocenter of ABC. However, we remark here that an 

analogue of the following argument also works in the case that the origin is the center 

of the circumscribed circle of ABC. 

As usual the position vector of the point X is denoted by x. Moreover, the inner product 

of the vectors x_  and y is denoted by xy. 

By the choice of the origin we have 

(6) a(b-gj   b(c-a)   c(a-b) 

that is 

 

(7) ab    bc     ca 

Let P  be  a  point of the plane such that  f^    ^  §F     \[P for some  /x  > 0.  This 

implies that 

(8a) (P~a)2    ß-(b-c)2 

(%b) (p-b)2   ß(c-a)2 

(Sc) (l-c)2   p(b-a)2 

(Sa), (Sb) and c(a - b)    0 easily yield 

(9a) p     ^'(a+b) + Xi'C 

for some real Ai. 

By symmetry we get 

(9b) p     ^(b+c) + \2-a 

for some real X2. 

From (9a) and (9b) it follows that  (*—¦ ~^2) •   o_- (Uj- - Xx V c      0. Hence, since a 

and c  are linearly independent, 

(10) A!=A2    ^. 
Thus, (9a) can be written in the form 

 

(11) p     ~^(a+b + c). 

It is easy to check that the position vectors of the orthocenter, the centroid and the center 

of the circumscribed circle of the triangle AB C  are 0,  \| --(a+b(a+b ++ c)c) andand \\ •    (a_ + b + c). 
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Hence, because of (11), p is colhnear with the above points; that is, it lies on the Euler 
line of the triangle ABC. 

Now we determine the number of points P for which f^   ^  ^F   \[ß with some 

p > 0. Let s  q2 + b2 + c2  and k  ab - bc  ca. Using (6), (7), (Sa) and (11) a rather 

simple computation shows that p satisfies the equation 

(12) (s + 6k) •   p2 + 2 •    (6k -s) ¦  p + (s - 2k)    0 

If s + 6k   0, then s + 6k   (a + b + c)2  implies that the orthocenter and the centroid of 
the triangle ABC coincide. That is, ABC is  a regulär triangle and we get p  | from 

(12). Thus, we assume that s +6k * 0, hence that ABC  is not a regulär triangle. The 

discriminant D of (12) is 

 

(13) D    -32k ((a - b)2 + (b- c)2 + (c -a)2) 

Hence, (12) has respectively two, one and no real Solutions for acute (non-regular), right 
and obtuse triangles. However, we have to show that any Solution of (12) is non-negative. 

We prove this by showing that the minimum value of the Solutions of (12) is ^. Namely, 

from (12) we get 

 

s-6k±^/-l6k(s-3k) 
(14) ß 

s + 6k 
 

A simple computation shows that p > | is equivalent to s + 6k > 0. As we have seen 

above, equality is  attained here only if the triangle ABC is regulär. This completes the 

proof of the  Theorem. D 
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