Aufgaben zur Ableitung der Cosinus- und der Sinusfunktion

Den Punkt P kann man auf dem Einheitskreis bewegen. Er hat die Koordinaten $P(\cos(\alpha) \mid \sin(\alpha))$ Die Frage ist nun:

"Wie schnell verändern sich die x-Koordinate und die y-Koordinate wenn der Winkel gleichmäßig zunimmt?"

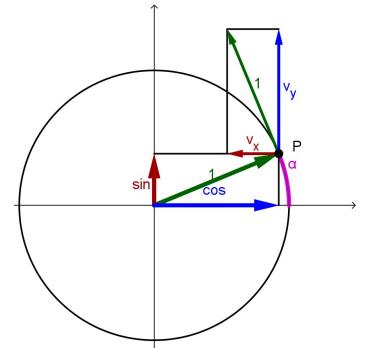
- **1)** Bei welchem Winkel bewegt sich der Punkt P besonders schnell nach rechts, bzw. nach links, oben, unten? Trage dies in die Tabelle ein:
- 2) Welche maximale Geschwindigkeit nach rechts (nach links, rechts, links) erreicht der Punkt?

	schnell nach rechts	schnell nach links	schnell nach oben	schnell nach unten
Winkel α				
max. Geschwindigkeit				

3) Bei welchem Winkel bewegt er sich (fast) gar nicht nach oben, bzw. nach unten, rechts oder links?

	nicht nach	nicht nach
	rechts/links	oben/unten
Winkel α		

4) Schalte die Ortskomponenten von P und die Geschwindigkeitskomponenten ein.



- **a)** Wie hängt die Geschwindigkeit nach rechts, bzw. nach links mit der x- und y-Koordinate von P zusammen?
- **b)** Wie hängt die Geschwindigkeit nach oben, bzw. nach unten mit der x- und y-Koordinate von P zusammen?
- c) Man erhält aus dem Ortsvektor durch Drehung um 90° gegen den Uhrzeigersinn den Geschwindigkeitsvektor.

Begründe damit den Zusammenhang zwischen den x- und y-Koordinaten der Geschwindigkeit und den Koordinaten von P:

- $\bullet v_x = -\sin(\alpha)$
- $\bullet v_y = \cos(\alpha)$
- **5)** Die Ableitung des Cosinus gibt an, wie schnell sich die x-Koordinate von P ändert und die Ableitung des Sinus gibt an, wie schnell sich die y-Koordinate von P ändert:

$$\cos(\alpha)' = -\sin(\alpha)$$

 $\sin(\alpha)' = \cos(\alpha)$