Class $4-\xi 6.2$
Volume
Basic Idea: Say R is a region in the plane:

- construct a height h "cylinder" with cross section R

FACT: This thing has volume $\operatorname{area}(R) \cdot h$

Ex:
$R=$ circle of radius r

$$
\begin{aligned}
\text { volume } & =\operatorname{ara}(R) \cdot h \\
& =\pi r^{2} \cdot h
\end{aligned}
$$

$R=$ rectangle with legs of length V and w

volume $=l \times \omega \times h$

What about things that aren't "cylinders?"

Intuition

- take your solid and lay it down along the x-axis

- consider cross-sections ie far X_{0} say C_{0}, write $A\left(x_{0}\right)$ for the area of C_{0}

Define volume of V to be

$$
\int_{a}^{b} A(x) d x
$$

Why should this work?
Why should this behave like

$$
\begin{gathered}
\text { Vol } \approx \sum_{i=1}^{n} A\left(x_{i}^{*}\right) \cdot \Delta x \\
n \rightarrow \infty m \int_{a}^{b} A(x) d x=\text { volume }
\end{gathered}
$$

Ex: Compute the volume of the sphere of radius r

$$
\begin{array}{rlrl}
& x^{2}+s^{2} & =r^{2} \\
\Rightarrow \quad & s^{2} & =r^{2}-x^{2} \\
\Rightarrow \quad & s=\sqrt{r^{2}-x^{2}}
\end{array}
$$

So $\quad A(x)=\pi s^{2}=\pi\left(\sqrt{r^{2}-x^{2}}\right)^{2}=\pi\left(r^{2}-x^{2}\right)$

cross-sectional area of the sphere of radius r
\Rightarrow volume is

$$
\begin{aligned}
& \int_{-r}^{r} A(x) d x=\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x \\
& =\ldots=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

Solids of revolution
Idea: Start with a curve in the first quadrant

and "revolve" or "state" it around the y-axis or x-axis

Ex:

rotate around the x-axis

This disk has radius $f\left(x_{0}\right)$, hence area $\pi f\left(x_{0}\right)^{2}$

$$
\text { volume }=\int_{0}^{b} \pi f(x)^{2} d x
$$

Ex: Volume of a sphere of rad. r :

revolve around x-axis to get sphere, so volume is

$$
\int_{-r}^{r} \pi\left(\sqrt{r^{2}-x^{2}}\right)^{2} d x=\int_{-r}^{r} \pi\left(r^{2}-x^{2}\right) d x
$$

SAME INTEGRAL
AS BEFORE?!!/I
A mare complicated example:
Ex: Compute the volume of the solid obtained by revolving the bounded region between $y=x$ and $y=x^{0}$ alban the $x-a \times 13$.

- This is a loge disk with a smaller disk removed
so its area is

$$
=\pi x^{2}-\pi x^{4}
$$

Hence the volume of this solid is:

$$
\int_{0}^{1} \pi x^{2}-\pi x^{4} d x=\frac{2 \pi}{15}
$$

Ex: Compute the volume of a pyramid with base a square of side-lnegth L and height h

$$
\begin{aligned}
\frac{x_{0}}{h} & =\frac{S / 2}{L / 2}=\frac{S}{L} \\
\Longrightarrow S & =\frac{L x}{h}
\end{aligned}
$$

So the area is $S^{2}=\frac{L^{2} x^{2}}{h^{2}}$
Hence the volume is

$$
\int_{0}^{h} \frac{L^{2}}{h^{2}} x^{2} d x=\ldots=\frac{L^{2}}{3} \cdot h
$$

