Test on Wednesday 2/14/24
-75 minutes

- in-class
- bring your own writing implement
- basic calculators allowed (no graphing calculators) (you will almost certainly not need one)

Last thing from 7.8

- want to know if

$$
\int_{a}^{\infty} f(x) d x
$$

diverges or converges
(i) try to find some $g(x)$ with $g(x) \geqslant f(x)$
for all $x \geqslant a$
and show that
$\int_{a}^{\infty} g(x) d x$ converges

(ii) $g(x) \leq f(x)$ for $x \geqslant a$ and $\int_{\infty}^{\infty} g(x) d x$ diverges.
Then $\int_{a}^{\infty} f(x) d x$ also diverge

Test Review

$$
\begin{aligned}
& \$ 5.5 \\
& \$ 6.1,6.2,6.3 \\
& \$ 7.8
\end{aligned}
$$

Basics:
7- Sketching functions

- polynomials
- \sin , \cos , \tan,

$$
-e^{x}, \ln (x), \sqrt{x}
$$

- finding zeros, finding where functions intersect

$$
-\frac{1}{x}, \frac{1}{x^{2}}, \frac{1}{x^{3}}
$$

- stardarel equation for the circle with center at $(a, b) w /$ radius r

Standard Derivatives/Integpals

- derive and intis of $e^{x}, \ln (x), e^{a x}$, polynoms. $\sin , \cos , \frac{1}{x^{n}}$, root functions
- product, quotient, chain rules
(doit need to know this atuff for tan, inverse trig factions)
hyper colic trig.
45.5: $4-\operatorname{sub}$

Idea: "wain rule in reverse"

Look for integrals look like

$$
\int f^{f^{\prime}(g(x))} \underbrace{g^{\prime}(x)=u} \frac{d u}{d x}
$$

- pick u to be the "ugly" part
- for indef. into, need to sub back in far u at the end
- for def. ins, reed to charge bounds, but no substitution is reid offer that
\$6.1 Area between curves

- compute the area between $f(x)$ and $g(x)$ (some fines other bounds)

$$
\text { i.e. } \quad \int_{a}^{v}(f(x)-g(x)) d x
$$

- need to find where g ad f intersect (i.e. $f=g$)
-need to figure out which function is larger

Beware of "negative area"

naively compute

$$
\int_{a}^{0} \int_{a}^{0}(f(x)-g(x)) d x
$$

- instead find c and compute

$$
\int_{a}^{c} f(x)-g(x) d x+\int_{c}^{b} g(x)-f(x) d x
$$

Might weed to switch variables?
city:

Ore

Hs:

Volumes

- Volume of cylinders

volume of this is h-area (R)
-use this to approximate and ultimately define volume for more complex solids

Motto: Think of area as "infinitesimal volume" and then add up all the areas (by an integral)

Disks/Washers

rotating about y-axis
(i) solve for x, ie. write the curve as $x=y(y)$ for some g

- area of the disk

$$
\text { is } \pi g(y)^{2}
$$

-add these up

$$
b y \quad \int_{0}^{b} \pi g(y)^{2} d y
$$

Alternatively Rotate about

$$
x \text {-axis }
$$

- rotate about some other live altogether

Ey

$$
\int \pi f(x)^{2}-\pi g(x)^{2}=\pi \int\left(f(x)=g(x)^{2}\right) d x
$$

Cylindrizal shells

$$
\int 2 \pi x f(x) d x
$$

97.0: Impropor Integals

Type S:

- letting x go to ∞, $-\infty$ or both

(i) $\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$
(i) $\int_{-\infty}^{a} f(x) d x=\lim _{t \rightarrow \infty} \int_{-t}^{a} f(x) d x$
(iii) $\int_{-\infty}^{\infty} f(x) d x=\underbrace{\int_{-\infty}^{-t} f(x) d x+\int_{c}^{\infty} f(x) d x}_{-\infty}$

Cboth weed to exist fos thas integal to conk.

Type $\$$

(i) $\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x$
(ii) $\int_{c}^{a} f(x) d x=\lim _{t \rightarrow a^{-}} \int_{c}^{t} f(x) d x$
(iii)

$$
\begin{aligned}
\int_{c}^{b} f(x) d x & =\lim _{t \rightarrow a^{-}} \int_{c}^{t} f(x) d x \\
& +\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
\end{aligned}
$$

Waring s:

- limits reed not exist
- you may not be fold twat there is a discontivinity

