ROTATIONAL KINEMATICS NOTES

This is one-dimensional motion, where the "dimension" is the angle $\theta(t)$. This angle is always measured in radians, and is measured positive in the counterclockwise direction from the positive x-axis. The rate of change of this angle as an object moves in a circular path is the angular velocity $\omega(t)$ in radians/second:

$$
\omega(t) \equiv \frac{d \theta}{d t}
$$

The rate of change of the angular velocity is the angular acceleration α in radians $/$ second 2

$$
\alpha(t) \equiv \frac{d \omega}{d t}=\frac{d^{2} \theta}{d t^{2}}
$$

For most problems the angular acceleration will be constant (but not necessarily zero). Just as with translational kinematics, if the acceleration α is not constant then we must use calculus to analyze the motion.

It was shown in an earlier document that the tangential (or "linear") velocity v_{T} is

$$
\begin{equation*}
v_{T}=\omega R \tag{1}
\end{equation*}
$$

where R is the radius of the circle. Then, taking the time derivative of this, we have the tangential or "linear" acceleration a_{T} (taking the angular acceleration to be constant):

$$
\begin{equation*}
a_{T}=\frac{d v_{T}}{d t}=\frac{d}{d t}(\omega R)=\frac{d \omega}{d t} R=\alpha R \tag{2}
\end{equation*}
$$

We also established earlier that the radial acceleration is

$$
\begin{equation*}
a_{R}=\frac{v^{2}}{R}=\omega^{2} R \tag{3}
\end{equation*}
$$

so that the magnitude of the total linear acceleration can be written

$$
\begin{equation*}
a=R \sqrt{\alpha^{2}+\omega^{4}} \tag{4}
\end{equation*}
$$

With these definitions we can proceed to develop the rotational kinematics formulas, in exactly the same manner as we did for linear kinematics. Here are the results, all of which assume a constant acceleration.

TRANSLATIONAL

$$
\begin{array}{cc}
x_{t}=x_{0}+\bar{v}_{t} t & \theta_{t}=\theta_{0}+\bar{\omega}_{t} t \\
x_{t}=x_{0}+v_{0} t+\frac{1}{2} a t^{2} & \theta_{t}=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2} \\
x_{t}=x_{0}+v_{t} t-\frac{1}{2} a t^{2} & \theta_{t}=\theta_{0}+\omega_{t} t-\frac{1}{2} \alpha t^{2} \\
v_{t}=v_{0}+a t & \omega_{t}=\omega_{0}+\alpha t \\
\bar{v}_{t}=\frac{v_{0}+v_{t}}{2}=v_{0}+\frac{1}{2} a t & \bar{\omega}_{t}=\frac{\omega_{0}+\omega_{t}}{2}=\omega_{0}+\frac{1}{2} \alpha t \\
v_{t}^{2}=v_{0}^{2}+2 a\left(x_{t}-x_{0}\right) & \omega_{t}^{2}=\omega_{0}^{2}+2 \alpha\left(\theta_{t}-\theta_{0}\right) \tag{10}
\end{array}
$$

