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Consider a mass  m attached to a compressible spring, with
Hooke  constant  k,  as  shown  in  Fig.  1.  The  motion  is
horizontal, with an initial displacement of L from the origin,
which  is  at  the  rest  position  of  the  spring.  The  mass  is
released  from rest,  so that  the  initial  velocity  is  zero.  The
question is, what is the motion x(t) of the mass, when sliding
friction  is  present?  This  friction  force  is  not  velocity-
dependent, and it always acts to oppose the present motion of
the mass. We consider three cases, and then some example
motions, via plots.
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Figure 1. Sketch of spring-mass system.

Case 1: Frictionless

Development

We have the position-dependent force of the spring

F k x 

as  the  only  force  acting  on  the  mass,  in  the  direction  of
motion,  along the  x-axis.  The mass does  not  move in any
other direction. From Newton’s second law,

netF k x m a  

so that
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Solution

This  homogeneous  second-order  ordinary  differential
equation (ODE) can be solved by several methods; here we
use Laplace  transforms.  Taking transforms of  Eq.  (1),  and
using the initial condition of zero velocity and initial position
x(0)=L gives

2s s L 0    

where  s is  the  Laplace  variable  and   is  the  Laplace
transform. From this we have
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and from tables of the inverse transform we find that

( ) cos1x t L t                            (2)

The period of this simple harmonic motion is
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                                     (3)

and the mass oscillates between L and –L. Qualitatively, if we
release the mass from x=L, to the right of the zero point, the
spring  is  extended  and  so  it  pulls  to  the  left;  the  mass  is
accelerated to the left, passing through zero, and it continues
to the left. This compresses the spring, which then exerts a
force to the right, slowing down the mass, till it stops. Then it
is accelerated to the right, passing through zero, and extends
the  spring  out  to  x=L again,  completing  one  cycle.  The
alternate extension and compression of  the spring provides
the  force  to  move  the  mass.  No  energy  is  lost  in  this
frictionless system, so the motion continues indefinitely. Note
that the initial position could just as well have been at -L, in
which case the spring is initially compressed; the motion is
still described by Eq. (2).

Maximum Velocity

The velocity of the mass is given by the first time derivative
of the position, Eq. (2), so that

( ) sinv t L t                             (4)

The maximum magnitude of the velocity is attained at a time
 when the sine in Eq. (4) is positive or negative unity, so that
we have
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These times correspond to positions
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and so the velocity is maximized as the mass passes through
x=0 from either direction. 

Maximum Acceleration

The acceleration is the time derivative of Eq. (4), which gives

( ) cosa t L t                               (5)

The magnitude of the acceleration will be maximized when
the cosine in Eq. (5) is positive or negative unity, so that
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Using  these  values  for  time  in  Eq.  (2)  to  find  the
corresponding positions, we find that 
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and so the acceleration is maximized at the extreme points of
the  travel.  This  makes  sense,  because  the  spring  is  at  is
maximum extension or compression when the mass is  at a
distance of L from the origin, in either direction.

Case II: Velocity-Dependent “Friction”

In  many  engineering  textbooks1 this  problem  is  analyzed,
using  the  artifice  of  “viscous  damping”  to  introduce  a
tractable form for friction. This sort of energy loss is taken to
be proportional to the current velocity of the mass, so that we
have, using a similar argument as above on the forces acting
on the mass, an ODE of the form
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where  q is a damping constant. Solutions of this ODE take
the  form  of  exponential-sinusoid  products,  so  that  the
amplitude of the motion decays away over time. The value of
the damping parameter q is central to the form of the solution,
which may be under- or over-damped, or “critically” damped;
in the latter case there is no oscillation. This form of friction
is not especially realistic, and is not what we are after. (Note
that,  however,  this  ODE  does describe  a  number  of
applications quite well, notably AC circuits.)

Case III: Sliding Friction

Development

For the spring-mass system, as seen in the real world, we will
have the usual kind of sliding friction, where the magnitude
of the friction force depends only on the object’s mass m, the
gravitational acceleration g, and the coefficient of friction ,
so that

f NF F m g  

The crucial fact about this problem is that the direction of the
friction  force  is  always  opposite  that  of  the  motion.  This
means when the mass is  moving from right  to  left,  or the
negative sense,  the friction force is directed in the positive
sense, and vice-versa; also, when the mass is not moving, the

1 For example, P.V. O'Neill, Advanced Engineering Mathematics, 3rd  Ed.,
   Wadsworth (1991), pp. 135-139.

friction  force  vanishes.  This  seemingly  simple  situation
greatly complicates the solution.

We need to rewrite the force balance, which now becomes

net spring fF F F m a k x m g     

where the  indicates that this sign can change. Then we have
the second-order ODE
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The question is, how do we choose the sign for ? Since the
friction force always opposes the motion, we can use the sign
of the velocity to get the sign of :
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The first case is motion from right to left, and the second is
motion from left to right. 

Solution

We  can  solve  these  ODEs  as  before,  using  Laplace
transforms. This time, the ODEs are nonhomogeneous, and
we  will  have,  for  the  same  initial  displacement  x=L and
initial velocity of zero,
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the inverse of which is
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Note  that  this  is  the  sum  of  the  homogeneous  solution
obtained above (second term), and a particular solution (first
term). Rearranging,

( ) cosx t L t
 


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         
                (6)

which is the form we will  use below. If  the coefficient  of
friction is  zero,   is  zero,  and we are  back  to  Eq.  (2),  as
expected.  It  is  essential  to  understand  that  Eq.  (6)  only
applies for the first motion of the mass, from position x=L,
while it moves to the left, until it stops. In the next section we
will  find  when  the  mass  stops,  and  then  consider  what
happens thereafter.

2
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If the initial position is x(0) = -L, we need to consider that the
direction of the friction force will  also be reversed.  In this
case  the  initial  motion  is  from left  to  right,  and  the  ODE
solution will yield

( ) cosx t L t
 


 

          

Travel Time

To find  when  the  mass  will  stop,  we  need  the  first  time
derivative of Eq. (6), i.e., the velocity. This will be

( ) sinv t L t


 
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Since  this  has  the  same  form  as  Eq.  (4),  the  maximum
velocity will again occur as the mass passes through the zero
point. In this problem we are interested in finding the time
when the mass stops moving, on each pass. The velocity will
be  zero  when  the  sine  is  zero,  which  occurs  at  time zero
(trivial) or at time 

sin ( )1 0
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
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 

which is  half  the time we found for  the period of the no-
friction case.  Here,  T is  the  time required  for  the mass  to
move from its rightmost to leftmost (or vice-versa) position.
This would also be the half-period for the frictionless case, so
we see that the periodicity of the motion is not affected by the
presence of friction.

Rest Positions

For the first slide, from  x=L on the right, to some position
x(T) on the left where the mass momentarily comes to rest,
the time required is T. Then the rest position at the left will be

( ) cos
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So the leftmost position now is not  –L,  as we had for the
frictionless case, but a value somewhat larger (more positive)
than that. 

Next we consider what happens when the mass moves from
this leftmost,  rest  position  x(T) back to the right.  Now the
sign of   in the ODE is reversed, and we can just flip the
signs of the   terms in Eq. (6). However, things are not so
simple. We must realize that the ODE solution proceeds from
the initial x-value x(T), not from x=L, as was used to develop
Eq. (6). The initial velocity is still zero, but the initial x is the
(rest) position attained when the velocity was zero on the last
pass. Using the negative of  (since the mass is moving to the
right), and the initial  x(T) we just found, the ODE solution
now will be
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Note  that  we  are  using  effectively  a  new  time  variable,
measured from (i.e., zero at) real time t=T. 

Next we’d like to know when (and thus, where) the mass will
stop on this journey to the right. Again we use the velocity,
which is

( ) sin ( )
2
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which will be zero when t = T, as we already knew, since that
was the at-rest starting point for this iteration, and it will also
be zero when

t T



 

Thus we can say that one complete period, i.e., motion from a
rest position on the right, to the (momentary) rest position on
the left, and back to rest at the right, is  2T, which is exactly
the period for the no-friction case.  The rest position at this
time t=2T will be

( ) cos
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x 2T L
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    

 

We see that  the motion to the right does not return to the
initial position  x=L,  but rather to a position somewhat less
than this.

Piecewise Solution

In both passes done so far, one from right to left, then from
left to right, the mass has not had as large an excursion in x as
happened for the frictionless case. This is of course what we
expect- friction is dissipating the energy of the system, and
damping the motion. If we continue the ODE solution process
a few more steps we will find a pattern emerging: the rest
position at each time T becomes smaller by a decrement

2





so that  each rest  position is closer to zero by this amount,
compared to the previous rest position's distance from zero.
This pattern can be summarized in the following expressions
for  the  x-position  of  the  mass.  Note  that  this  solution  is
piecewise-  a  different  solution  applies  during  each  “half-
period” or “travel time” T.

First we find the index number n of the transit, for the current
time t (the "ceil" function rounds up):

3
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Next we define some factors which need to be conditioned on
whether the initial position L was positive or negative:
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With these factors we can write the piecewise solution for the
motion:

 ( , ) ( ) cos ( ) ( )1 2x n t k n t n 1 T k n             (7)

This can of course be mechanized,  to produce plots of the
motion, as we will see below.

Endpoint

The final consideration in the analysis of this system is, when
will the mass cease to move?

In a frictionless system the motion, once initialized by the
input of energy (to displace the mass to some nonzero initial
position),  will continue "forever."  For the friction case just
considered, we recognize that the spring force must overcome
the friction force at each "rest stop" the mass makes. When
the  displacement  x(t) is  no  longer  sufficient  to  produce  a
spring force of sufficient magnitude to move the mass against
the force of friction, then the mass will not move any further.

In terms of the piecewise solution developed above, we seek
N, the  maximum  number  of  excursions  the  mass  will
experience. When the forces just balance, at a rest position,
we have

( )k x NT m g

so that

( )x NT





Considering  Eq.  (7)  we  see  that  when  k1 is  zero,  this
condition is met. Thus, for positive L, 
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 
 

         

which can be solved for N to give

1 k L
N

2 2 m g
                              (8)

If  the initial  displacement  is  negative,  we use the absolute
value of L in Eq. (8). Note that if the friction coefficient  is
zero,  N is infinite; this means that the motion will not stop.
This formulation is based on checking the force balance at
each rest position (i.e.,  exactly zero velocity).  However,  in
practice, the motion can stop when the velocity is "small" and
the forces are (nearly) balanced; this need not occur only at a
time nT.

As an interesting sidebar, we can estimate the total distance
moved  by  the  mass,  by  considering  the  potential  energy
stored in the spring by virtue of its initial displacement L, and
recognizing that the friction must dissipate this energy. The
spring's potential energy is given by

21
k L

2

while the work done by friction is

m g D

Equating these and solving for D, we must have

( )
2

0

k L
D v t dt

2 m g




  

where  is the time when the motion stops. Testing this with
the numerical simulation discussed in the next section shows
that this relation holds.

Example Solutions

Simulation

A  numerical  simulation  was  developed,  which  solves  the
ODE for the friction case, using a simple Euler iteration. The
time-dependent position, velocity, acceleration, spring force,
friction  force  are  found  and  can  be  plotted.  The  program
accepts  inputs  for  the  spring  constant,  mass  of  the  object,
coefficient of friction, and the initial position. The piecewise
solution for the position developed above is also implemented
and can be plotted for comparison to the numerical results.  

Figure  2  shows  pseudocode  for  the  calculations.  Note  the
stopping  rule,  based  on  the  magnitude  of  the  spring  force
being  less  than  the  friction  force,  at  any  time  when  the
magnitude of the velocity is "small" (it need not be exactly
zero, i.e.,  at a time  nT). The minimum velocity is an input
variable.  This test can be defeated;  the simulation will still
produce the slowdown and stopping of the mass, but it will
oscillate at the end, as the velocity and acceleration interact to
rapidly  switch  the  friction  force  direction.  Physically,  it  is
more sensible to actively terminate the motion, since this is
what would happen. The termination test sets the acceleration
and velocity exactly to zero, and so the position will stay at

4
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the value it had when this test was passed. Of course, at the
start  of  the run,  before  the loop in  Fig.  2 is  executed,  the
velocity v is initialized to zero, and the position x is initialized
to L, which is a user input.

for t = 0  to  tfinal  step  h
    a = - k * x / m   -  sign(v) * mu * g           
    if ( dotest = 1 )
        if ( abs(v) < minvel   &   abs (k*x) < mu*m*g  )
           a = 0                       
           v = 0
        endif
    endif
    v = v  +  a * h                                            
    x = x  +  v * h
   D = D + abs(v) * h
end loop

Figure 2. Pseudocode for simulation main calculations

Sample Runs

In Figure 3 we have an example run, for the parameter values
indicated. Time is the horizontal axis, in seconds, and the x-
displacement in meters is the vertical axis. The solid line with
the  symbols  is  the  x-position;  the  line  is  the  numerical
solution and the symbols are from the analytical (piecewise)
solution. They agree well. The solid line without symbols is
the velocity, and the dotted line is the acceleration. Note the
discontinuities in the acceleration, which occur at each rest
position, when the friction force suddenly changes direction.
These discontinuities are reflected in the velocity curve; the
change in slope can just be seen, e.g., at about 8 seconds.

In Fig. 4 we have a shorter run, where the spring force and
the  initial  displacement  are  smaller.  This  means  that  the
motion  is  terminated  sooner.  The  change  in  slope  of  the
velocity  can  clearly  be  seen,  at  about  3  seconds.  This  run
does  not  complete  one  cycle,  since  it  terminates  on  the
negative side of the axis. The analytical solution also has a
stopping test, using the derivative of Eq. (7) for the velocity.
This velocity is shown in Fig. 4 as the triangles overlaid onto
the velocity curve from the numerical solution.

Figure 5 shows the position results for a friction case, with
the frictionless solution added (dotted lines). We see that the
peaks (rest positions) for the friction solution are occurring at
the same time as the peaks of the frictionless system. Thus,
the friction is not affecting the frequency of the motion, only
the amplitude.

Figure 6 shows the positions and the spring force (solid line)
and the friction force (dotted line). The friction force has a

constant magnitude, but changes sign at each half-period  T,
when the velocity is zero. 

Figure 7 shows a zoom into the last part of this run, where we
see that the magnitude of the spring force has fallen just to
the  friction  force  level,  and  the  motion  stops  when  the
velocity  falls  below the  threshold  level,  which  in  the  last
segment didn't require the full time T. Thus the estimate N is
only  approximate,  since  the  last  segment  may  not  be
completed.
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Figure 3. k=30 N/m; =0.5; m=22 Kg; L=-33 m.
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Figure 4. k=15; =0.4; m=15; L=15.
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Figure 5. Example run showing frictionless response (dotted line): k=25; =0.2; m=10; L=30.
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Figure 6. Example run: k=30; =0.3; m=10;L=-15. 
Position and forces.
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Figure 7. Zoom at end of run in Fig. 6
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