Golden Rectangle on 4 sides of a prism (box).
At what value of " x " is the value of the volume (V) equal to the value of the total surface area (GSA)?

$$
\text { Ara }=(\sqrt{5}+1) x^{2}
$$

$$
V=\left(\frac{\sqrt{5}+1}{2} x^{2}\right)\left(\frac{\sqrt{5}+1}{2} x\right)=\frac{5+2 \sqrt{5}+1}{4} x^{3}=\left(\frac{3+\sqrt{5}}{2}\right)^{3}
$$

$$
\text { TS } 4\left(\frac{\sqrt{5}+1}{2}\right) x^{2}+2\left(\frac{\sqrt{5}+1}{2} x\right)^{2}
$$

$$
\frac{(2 \sqrt{5}+2) x^{2}+2(3+\sqrt{5}) x^{2}}{}
$$

$$
(5+3 \sqrt{5}) x^{2}
$$

Let $\mathrm{V}=\mathrm{TSA}$ \& move all terms to same side. Factor out an $x^{\wedge} 2$. Set each factor $=0$ \& solve.
add the $5+3$ Sqrt(5) to both sides. Divide both sides (multiple by reciprocal) of (3+sqrt(5)/2

rationalize the denominator by multiplying by the conjugate.

