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NOTES ON ENERGY, WORK, MACHINES 
 
 
INTRODUCTION 

"The most important and most fruitful concepts are those to which it is impossible to attach a well-defined meaning." 
 
The concepts of energy and work are abstractions, are not fundamental laws of nature, and are not even 
part of Newton's Principia. Indeed, these ideas were argued about for some years before agreement was 
reached that they are both useful concepts. There is no obvious physical interpretation of work or energy, 
because they are human-created definitions. These definitions, however, can be developed using 
Newton's laws of motion. 
 
The so-called integrals of motion provide a mathematical basis for going from Newton's Second Law to 
the definitions of impulse and work. If we integrate a force, which need not be constant, across a time 
interval, we get the impulse, and this can be shown to cause a change in the momentum of the object 
upon which the force is acting.  
 
But we can also integrate the force across the distance over which it acts. This quantity is defined to be 
the work done by the force, and it causes a change in something that we will define to be the "kinetic 
energy" of the object. Note that, when the force in question is constant over the interval (time or distance) 
of interest, the calculus process of integration reduces to simple multiplication. 
 
The difference between integrating across time as opposed to across distance is not, to say the least, 
intuitively obvious. However, the concepts of work and energy are, without question, very useful in 
physics. Some problems that would be very difficult and tedious to analyze, if a solution could be found at 
all, using just Newton's laws and kinematics become elegantly simple if we use work and energy instead. 
 
 
ENERGY 

Although we use the word "energy" frequently, it is not easy to define in physics. One idea is that energy 
is the ability of an object to change the state, or condition, of another object. Another definition is that 
"energy is the capacity for doing work." Many physical processes represent a conversion or 
transformation from one form of energy to another; energy can also be transferred from one object to 
another. Energy is a scalar quantity; it does not have a direction in the sense that a vector does. 
 
There are two main kinds of energy in mechanics: potential  and kinetic , and the sum of these is the 
mechanical energy  of a system. Potential energy can be thought of as the energy of position for an 
object in a system. That object has the potential for doing work. Kinetic energy is the energy of motion.  
 
 
POTENTIAL ENERGY 

The most common form of potential energy in mechanics (as opposed to, say, electromagnetics) is 
gravitational potential energy. It can be proved, using Newton's Law of Gravitation and some calculus, 
that the gravitational potential energy for an object near the earth’s surface is 

PE m g y=                                                                     (1) 

where y is the vertical height above some reference, or zero, level. This reference level is arbitrary; in 
many cases we take it to be the ground (earth's surface), but it need not be. More correctly, to 
acknowledge that potential energy is relative, and that as a practical matter we are usually interested in a 
change  in potential energy, we can write 

PE m g y∆ = ∆                                                                  (2) 
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When y is measured with respect to some given reference level, that level cancels out of the difference 
∆y-- it vanishes. Notice that the change in potential energy will be negative when an object falls, since its 
initial y will be larger than the final y, so that 

 ( ), ,P P final P initial final initialE E E m g y y∆ = − = −  

 
It can also be proved that the gravitational potential energy of an object does not depend on the path 
taken to get it to the relative height y. If we lift a box of books onto a tabletop, it has a certain amount of 
potential energy, given by Eq(1), regardless of whether we (a) lifted the box directly up; (b) used a ramp 
to push it up; or (c) walked all over the building, up and down stairs, before placing the box on the table. 
 
 
KINETIC ENERGY 

Kinetic energy is much simpler to grasp-- it is the energy of motion and is defined as 
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2KE mv≡                                                                 (3) 

This definition arose from the integral of motion that uses distance-- the "work" integral (next section). 
Long ago, a lot of argument among scientists took place about whether this quantity or momentum         
(p = mv) was a better representation of the "quantity of motion." Recall that momentum is a vector, while 
all forms of energy are scalars.  
 
 
WORK 

In very general terms, that also apply in other areas of physics besides mechanics, work can be thought 
of as the process of energy transfer. (But, if we have defined energy as the capacity to do work, then our 
definitions are circular!) When a net force acts on an object, over some distance, we say that the force 
does "work" on the object.  
 
A force which only changes the direction of motion, while still causing an acceleration, does not alter the 
kinetic energy of the object. Such a force does not do work, but it does cause a change in the momentum 
of the object (which is a vector). Work is only done when motion is produced by the application of a force.  
 
In general, if a constant net force F is acting at an angle θ (which may be zero) to the direction of object’s 
displacement d (a vector), then the work done is found using 

cos( )W F d F dθ= = =F d
�

i                                                   (4) 

If the force is not constant then we must use an integral in Eq(4). Work is the product of two vector 
quantities (force and displacement), but the result is a scalar; the vector part of Eq(4) (bold letters) is the 
so-called "dot" or "scalar" product of two vectors.  
 
This is evaluated as indicated in Eq(4), using the product of the magnitudes of the two vectors, times the 
cosine of the angle between them. The last term in Eq(4) is another way to write this: the product of the 
displacement magnitude and the component of the force that is parallel to the displacement. 
 
The cosine accounts for the fact that only the component of the force which acts along the direction of 
motion will cause a change in speed and, thus, kinetic energy. A more general treatment of work requires 
the use of vector calculus (a varying force, in two or three dimensions).  
 
Neither work nor energy has a direction, but work can have an algebraic sign. Note that, if the direction of 
the force is opposite that of the motion, so that the angle θ is 180 degrees, then the work is negative. This 
is the case, for example, in stopping a moving car; the brakes do negative work. 
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To summarize a few properties of work: (a) it is a scalar, even though it is found from vector quantities;  
(b) it can be either positive or negative; (c) if the angle θ is 90 degrees, no work is done, since the applied 
force is only changing the direction of motion and not the magnitude of the object's velocity; (d) a common 
way of defining work is to say that it is "force times distance" but we see from Eq(4) that it may be a bit 
more complicated than that; (e) the units of work are “joules” which are also the u nits of energy .      
A joule is one newton-meter, or 

2

2

m
1 joule 1 newton meter 1kg

s
= =i  

The work done to lift an object of mass m across a height difference ∆y at a constant speed is just the 
force (to overcome gravity) times the distance lifted; so 

PW E m g y= ∆ = ∆                                                          (5) 

In this case the work done in lifting is “stored” as potential energy. Note that, even though we lift straight 
up, the force is applied in the direction of the (vertical) displacement, so that the angle θ in Eq(4) is zero.  
 
Also, when work is done on an object and its potential energy is not changed, we can write 

( )2 21

2k f iW E m v v= ∆ = −                                                      (6) 

This says that the work done by a net force acting on an object causes a change in the kinetic energy of 
the object. This equation is usually what is meant by the phrase "work-energy theorem ." This result can 
be obtained via calculus (and must be, if the applied force is not constant), or by combining  F = m a  and 
kinematics equations, for a constant force. 
 
CONSERVATION OF (MECHANICAL) ENERGY 

A very important concept in physics is the “conservation of energy” (CoE) and in the present context this 
is mechanical energy. The conservation of energy says that, if no external force or “agent” acts on a 
system, the sum of the potential and kinetic energies of the system remains constant. Energy exchanges 
back and forth in the system, between potential and kinetic, but their sum is constant. Many mechanics 
problems, especially those involving velocities, are far more easily solved using the conservation of 
energy rather than the kinematics equations. 
 
This concept is generalized into the oft-quoted statement: "Energy can neither be created nor destroyed." 
This implies that all the energy in the universe was present from the beginning and always will be. It can 
change forms, including into and back from matter, that is, by E = mc2, but energy is conserved. (There 
are examples in nuclear science where this exchange between matter and energy is observable.) 
 
A more mundane example of CoE is the simple pendulum. The potential energy varies with the elevation 
(height) of the bob, increasing as it goes higher, decreasing to zero when it is at the vertical (rest) 
position. The kinetic energy is the opposite, since it is zero when the bob is at its highest point- it 
momentarily stops, then reverses direction. As the bob passes through the vertical position it has the 
maximum speed. The sum of the mechanical energy, potential plus kinetic, is a constant. This constant is 
determined by both the initial velocity and angle at which the pendulum was released. 
 
GENERAL WORK-ENERGY THEOREM 

The conservation of energy leads to this important result. When work is done on a system by an external 
agent, the “work-energy theorem” says that 

( ) ( )2 21

2P K f i f iW E E m g y y m v v= ∆ + ∆ = − + −                                (7) 

How much of the work goes into kinetic vs. potential energy change depends on the specific problem. For 
one example, if there is no change in (gravitational) potential energy, then we can see from Eq(7) that the 
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kinetic energy would be equal to the work done in bringing an object to the speed vf from rest. For another 
example, if we lift an object straight up at a constant speed then the last term in Eq(7) is zero, and we 
have Eq(5) for the work done in lifting an object. Note that none of the applied force goes into changing 
the speed of the object as we lift it. 

If there is no external force applied to a system, and there are no "dissipative" or  "nonconservative" 
losses (i.e., a loss of energy that cannot be recovered, such as frictional losses as heat), then Eq(7) leads 
to the important result 

0 P K K PE E E E= ∆ + ∆ ⇒ ∆ = − ∆                                          (8) 

and this in turn is usually rearranged to be a very useful expression of the CoE: 

2 21 1

2 2i i f fm v m g y m v m g y+ = +                                            (9) 

 

POWER 

When work is done, it is over some finite time period. How rapidly work is done is measured by “power” 

W
P

t
=

∆
                                                                         (10) 

This equation gives the average power produced (or used) over a time interval ; thus the use of ∆t, not 
the continuous time variable t. If the work done (or energy transferred) was not at a constant rate, then 
Eq(10) would need to use an integral. The units of power are “watts” which are defined to be 

joule
1 1watt

s
=  

Work, or energy, can be expressed using the product of power and time, so that 

2

1

( )
t

t
W E P t dt P t= ∆ = = ∆∫                                                  (11) 

A familiar unit is the “kilowatt-hour” that is used to measure electricity consumption. It measures energy, 
not power, and is done using a device (a KWH meter) that in effect calculates the integral in Eq(11), since 
the power usage (i.e., rate of energy consumption) in a home is not constant.  

We also write here an equation that can be useful for some problems: 

cos( )
cos( )

F d
P F v

t

θ θ= = =
∆

F vi                                                 (12) 

since the displacement d is like a ∆x, and ∆x / ∆t is just the velocity v. Note that in this case the angle θ is 
between the applied force and velocity vectors. 
 
 
SIMPLE MACHINES  

A machine is a device that "multiplies" forces or changes the direction of forces. Usual examples are the 
lever, or a ramp (inclined plane), which everyone has used at some time. The basic idea is that the work 
input is equal to the work output (by conservation of energy). This leads to a simple relation that we can 
use to solve many of these kinds of problems: 

input input input output output outputW F d F d W= = =                                         (13) 

Here d is the distance moved. What this amounts to, for the lever especially, is that we can use less force 
to move something, but the price for this is that the object doesn't move very far. The relationship 
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between the distances moved (d) and the lengths (r) of the lever on either side of the fulcrum (Type I 
lever, like a see-saw) can be shown, with a bit of math, to be 

 output output

input input

d r

d r
=  

 

MECHANICAL ADVANTAGE; EFFICIENCY 

Mechanical advantage (MA) is a concept that expresses how a machine reduces the force we need to 
apply in order to do a certain amount of work. The larger MA is, the smaller force we need. The "ideal 
mechanical advantage" is usually defined as: 

input

output

d
IMA

d
≡                                                               (14) 

while the "actual mechanical advantage" is defined to be 

output

input

F
AMA

F
≡                                                                 (15) 

and the "efficiency" is just the ratio of these: 

output output output

input input input

F d WAMA

IMA F d W
ε ≡ = =                                                 (16) 

The difference in actual vs. ideal MA is of course due to dissipative losses such as friction. Thus, the 
efficiency is less than unity. 
 
An interesting fact is that the work done in using a frictionless ramp (efficiency = 1) to slide an object up to 
some given height is exactly the same as it would be if we just lifted the object directly up. This can be 
proved in various ways. What the ramp does for us is to reduce the applied force needed. If there is 
friction, however, the problem is a bit more subtle, and we could actually end up doing more work using 
the ramp than by direct lifting. 
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EQUATION SUMMARY 
 
 

PE m g y∆ = ∆                                                                            change in gravitational potential energy  
 
 

21

2KE mv≡                                                                                                                          kinetic energy  

 
 

cos( )W F d F dθ= =
�

                                                                                      work (constant force)  

 
 

( ) ( )2 21

2P K f i f iW E E m g y y m v v= ∆ + ∆ = − + −                         general work-energy theorem  

 
 

K PE E∆ = − ∆                                                                                  conservation of mechanical energy  
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2 2i i f fm v m g y m v m g y+ = +                                         conservation of mechanical energy  

 
 

W
P

t
=

∆
                                                                                               power as work over a time interval  

 
 

cos( )P F vθ=                                                                                             power as f orce with velocity  
 
 

input input input output output outputW F d F d W= = =                                                                    simple machine  

 
 

input

output

d
IMA

d
≡                                                                                                 ideal mechanical adva ntage 

 

output

input

F
AMA

F
≡                                                                                              actual mechanical advantage  

 

output output output

input input input

F d WAMA

IMA F d W
ε ≡ = =                                                                                          efficiency  

 
 

 


