
Parallel Lines Proportionality Theorems

1)	Go to http://tube.geogebra.org/material/simple/id/3108761 . A quick way to do this is simply to go to tube.geogebra.org and then type in the number 3108761 in the "Search Materials" bar.
2)	Slide the first slider slowly all the way to the right. What can you conclude about the 3 lines?
3)	As you moved the first slider, what transformation(s) took place with the pink angles?
4)	Did this/these transformation(s) change the measure of this pink angle?
5)	What theorem now justifies the fact that the top 2 lines are parallel? Write it out as a conditional ("if-then" statement).
6)	What theorem now justifies the fact that the bottom 2 lines are parallel? Write it out as a conditional ("if-then" statement).
7)	Now slide the $2^{\rm nd}$ (black) slider slowly all the way to the right. Pay careful attention to what's happening as you do.
8)	What 1^{st} transformation took place on segment \overline{DE} ?
9)	Did this transformation change the length <i>DE</i> ?
10]) What transformation took place on ΔABE '?
11]	What can you now conclude about $\Delta ABE'$ and $\Delta ACE''$? Explain fully why you can definitely conclude this.

$$\frac{AC}{AB} = \frac{AE''}{DE}$$

But wait!

$$AC = +$$

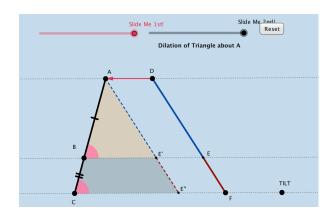
$$FD = -$$

$$\frac{AC}{AB} = \frac{+}{AB}$$

and

$$\frac{DF}{DE} = \frac{+}{DE}$$

Now, if we set the right sides of both equations equal to each other (by substitution), we have


$$\frac{+}{AB} = \frac{+}{DE}$$

If we use the distributive property, we now obtain

$$\overline{AB} + \overline{AB} = \overline{DE} + \overline{DE}$$

Simplifying both sides now yields

$$\overline{AB} = \overline{DE}$$

© 2016 Dynamic Math Solutions. All rights reserved.