Interesting Coplanar Locations!

- 1) In the applet on your screen, you'll notice a segment with endpoints *A* and *B* and a slider with name *r*.
- 2) Construct a circle with center *A* that has radius of *r*. (You won't see anything yet.)
- 3) Construct a circle with center *B* with radius of *r*. (You won't see anything yet.)
- 4) Select the **Move** arrow. Slide the slider *r* so that you see two circles emerging from centers *A* and *B*.
- 5) Use the Intersect tool to plot the two points of intersection of these two circles. (GeoGebra should default to naming these points of intersection *C* and *D*.)
- 6) What can you conclude about the distances CA and CB? Why can you conclude this?

7) What can you conclude about the distances *DA* and *DB*? Why can you conclude this?

- 8) Now, right click on point *C*. Select **Trace On**. Do the same for point *D*.
- 9) Bring the slider back to its left-end. Now start re-sliding the slider slowly and observe the traces of points *C* and *D*.
- 10) What is the relationship between every purple point (trace) you see with respect to point *A* and point *B*? *Hint: Can you think of an adjective that describes the position of point C with respect to points A and B?*
- 11) What does this coplanar purple locus (set of points that satisfy a certain condition) look like (with respect to segment \overline{AB} itself?)

) Complete the following:			
If a point is	from the		_ o f
a	, then that point lies on the		
		of that	

12)Use GeoGebra to verify your response to (11) by using the other tools provided in the limited toolbar.