Important variables

Earth's axial spin:

 $t = number\ of\ hours\ from\ the\ start\ of\ each\ day; 0 \le t < 24$

 $\Delta t = (sunset \ time) - (sunrise \ time)$ $\omega = angular \ velocity \ (spin \ rate) = \frac{360^{\circ}}{24} = 15 \ degrees/hour$ $= \frac{(2\pi)^{\circ}}{24} = \frac{\pi}{12} \ radians/hour$

Earth's solar orbit:

 θ = the (angular) component of Earth's axial tilt relative to the Sun; $-23.5^{\circ} < \theta < 23.5^{\circ}$

 $T=number\ of\ days\ since\ the\ last\ summer\ solstice;\ 0\leq T<365$ $\Omega=angular\ velocity\ (orbital\ rate)=rac{360^{\circ}}{365}=rac{71}{72}\ degrees/day$ $=rac{(2\pi)^{c}}{365}=rac{2\pi}{365}radians/day$

5

Important Equations

$$\tan\theta = \tan(\theta_{max})\cos(\Omega T)$$

$$\cos\left(\frac{\omega\Delta t}{2}\right) = -\tan\alpha\tan\theta$$