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These equations are actually derived using calculus, which was developed in large part, at first, to 
understand the laws of motion. In calculus two main ideas are essential: (1) the rate of change of 
a function at a point, that is, the slope at that point; (2) the area under a graph across some region 
of the graph, which relates to a quantity of something. This is why we are using these properties 
of the graphs of displacement, velocity, and acceleration: because the rate of change and the 
quantity have physical meanings.

The calculus derivation proceeds from the assumption of a constant acceleration. This leads to a 
simple second-order ordinary differential equation (ODE). The solution to this ODE first yields an 
equation for the time-dependent velocity, and then the solution process generates another 
equation, this one for the time-dependent displacement. These are the two "equations of motion" 
and deriving them requires that we have the "initial condition" for both the velocity and 
displacement. The initial conditions are the values of the velocity and displacement at time zero.
 
It can readily be shown that these equations of motion are the same as we will derive below 
(Equations 2, 5), without using calculus. From the two equations of motion we can then do some 
simple algebra to derive several variations, that are useful in solving kinematics problems.

POSITION (DISPLACEMENT) VS. TIME
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Since, for accelerated motion, the graph is curved, the slope is not constant. The slope, or rate of 
change of displacement at any instant is the velocity at that instant. Over an interval of time t we 
can find the average velocity across that interval. We need to use an average because the velocity 
is continuously changing during the time interval. We define the average velocity to be the 
displacement change divided by the time interval:
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(3)
x
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vinitial vfinal  t

and this simplifies to be

x Atriangle Arectangle
1

2
t vfinal vinitial  vinitial t

AREA
The area under this graph (between the graph and the horizontal axis) across some time interval t 
is the quantity of change in the displacement of the moving object during that time interval. Since 
the graph is a straight line, we can find this area using the formula from geometry for the area of a 
trapezoid, or, we can recognize that we have a triangle and a rectangle combined. Then we can 
write

(2)vfinal vinitial a t

and this can also be written as

a
v

t


SLOPE
The slope, or rate of change of velocity, of this graph is constant, because we are assuming that the 
acceleration is constant. The acceleration is the rate of change (slope) of the velocity vs. time 
graph. So we can write
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VELOCITY VS. TIME

AREA        
The area under this graph has no physical interpretation.

(1)x xfinal xinitialxfinal xinitial vavg t

This can also be written as

t
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Note that the final velocity does not appear in this equation.

(5)xfinal xinitial vinitial t
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which simplifies to

x
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vinitial vinitial a t   t

These are equations (2) and (3) above. If we substitute (2) into (3) we have

x
1

2
vinitial vfinal  tandvfinal vinitial a t

One of the most basic and useful kinematics equations tells us the displacement as a function of time. 
One way to derive this is as follows. We have already found that

DISPLACEMENT VS. TIME EQUATION

SLOPE
Since the acceleration is constant, the slope, or rate of change of acceleration, is zero. (Only with 
more advanced mathematics can problems with a non-constant acceleration be analyzed.)

AREA
The area under the acceleration graph across some time interval t is the quantity of the change in 
the velocity of the moving object during that time interval. We have already written out the 
equation for this, above, as equation (2).
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ACCELERATION VS. TIME

This relation for the average velocity can only be used if the acceleration is constant.

(4)
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vavg
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Next we recognize that we can use this with the definition of the average velocity,
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        time tvfinal
2

vinitial
2

2 a x

     final velocityxfinal xinitial vinitial t
1

2
a t

2


   displacement xvfinal vinitial a t

     accelerationxfinal xinitial vavg t

vavg
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2
vinitial vfinal 

   what's missing

Our objective is to be able to solve kinematics problems based on the information given in the 
problem statement. While in principle we could start from the most basic equations and in effect 
re-do these derivations, this would waste a lot of time. So we do this algebra once, write down the 
results, and then choose the proper equation from this set. (See the kinematics "recipe" for a 
structured way to use these equations; the missing variable is important there, for the process of 
choosing the appropriate equation.)

SUMMARY
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which we usually write as
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and then we can use this in equation (3) to find

t
vfinal vinitial

a


This is a very useful kinematics equation when the time t is not given. Using equation (2) we can 
find that

VELOCITY / DISPLACEMENT EQUATION
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