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ELECTRICITY AND MAGNETISM REVIEW 
 

The indented material is supplementary, and you are not accountable for it. This 
information is just to provide a bit of extra background, to enhance your understanding of 
the material for which you are accountable. 

 
 
ELECTROSTATIC FORCE    (COULOMB 'S LAW) 
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The constant k is 9x109 N m2 / C2  and the separation distance r (sometimes d is used) is measured along 
the straight line connecting the centers of two charged objects, each small enough to be considered a 
"point." The charges q can be of either sign, so you must select one sign or the other for each charge.  
 
Follow the rules of algebra when multiplying these, and then the force is one of attraction if its sign is 
negative, or the force is one of repulsion if its sign is positive. This is because attraction attempts to 
reduce the distance r between the objects, while repulsion attempts to increase this distance. Remember 
the rule: "opposites attract, likes repel." 
 
This is, of course, an "inverse-square" law, just like Newton's Law of Gravitation. This means that if we 
were to double the distance r, then the force would be one-fourth (not half) of what it was. 
 
Often, problems will involve electrons and/or protons; their charge magnitude q is 1.6x10-19 C. 
 

Note that, to be consistent, we should have used a negative sign in the force-of-gravity 
equation, since it is always a force of attraction. Note also that the electric force is a 
vector, and in more advanced study the equation above is written a bit differently, to 
include the direction of the force in a more general way. When this is done, we can 
readily find the net, resultant force on a charged object in the presence of several other 
charged objects, using vector addition. This is the principle of superposition, which is a 
fancy way of saying that the effects of the several charges are independent of each other. 

 
 
ELECTRIC FIELD 
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This definition is based on the force experienced by a small-magnitude, positive "test" charge, which we 
will call q2 to be consistent with Eq(1) above. That is, charge q1 is said to produce an electric "field" in its 
vicinity. This field exerts no force until some other charged object, here, q2, comes into its vicinity. As with 
Coulomb's Law, both objects are assumed to be physically small, i.e., mathematical "points." This is 
important, since "extended" objects can have much more complicated fields around them. 
 
The electric field is, like the force, a vector quantity. The convention is that, if charge q1 is positive, we say 
that the field is directed outward from it, or if it is negative, the field is directed inward toward it. This 
makes sense, because the "test charge" is assumed to be positive, so if q1 was also positive, then the 
resulting force would be one of repulsion, and vice-versa if it was negative. 
 
The units of electric field strength are N / C as we can see from Eq(2). Note that if we have the field E, we 
can easily find the force on some charge q in this field, with F = qE, which follows directly from Eq(2). 
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ELECTRIC POTENTIAL ENERGY 
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This is, again, for two "point" charges, and is derived by considering the work done to bring the two 
charges together from an infinite distance to the distance r. Note that this PE can be positive or negative, 
depending on the signs of the charges, just as with Eq(1).  
 
If the two charges have the same sign, then we must do work (apply a force across a distance) to bring 
the charges closer together, against the force of repulsion. This is positive work. If the charges are 
opposite in sign then they will attract each other, and, in a sense, negative work is done (we don't have to 
apply any external force). Potential energy, of any kind, only exists when there is a force present. 
 
The units of potential energy are, as usual, J, that is, N m, which we can see from Eq(3). Note that 
potential energy is a scalar quantity ; it can have a sign ( positive or negative) but it does not have a 
direction. This turns out to be convenient when analyzing more complicated problems. 
 

Eq(3) is derived using integral calculus. The result, in this case, is simple- just multiply 
the force by the separation distance r. You can imagine that for other kinds of situations, 
other than simple point charges, these calculations could become very complicated. It's 
also interesting, and useful, that the electric field can be derived from the electric 
potential, at any point, by another calculus process, called differentiation. 

 
 
ELECTRIC POTENTIAL  
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This is confusing, because it sounds similar to the PE, but it is actually the PE per unit charge . Eq(4) 
applies to a point charge, q1, which sets up an electric field in its vicinity. As charge q2 moves with respect 
to q1, the potential energy of this system (i.e., both charges) changes. For practical work it is simpler to 
divide this PE by q2 to get a new quantity, the electric potential V, which is (1) independent of the charge 
at a point at distance r from q1, and is (2) caused by the presence of charge q1. 
 
It isn't very useful to speak of the potential by itself. Just as with gravitational PE, we really need to use 
potential differences . So we should write (we usually just write V but we really mean ∆V) 
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where W is the work done. Be sure to recognize that a potential difference ∆V is not the same thing as a 
difference in potential energy, ∆PE, as we can plainly see in Eq(5)! The potential difference in volts is the 
potential energy in joules per unit charge, in coulombs; thus volts = joules / coulomb. 
 
For a uniform electrical field, such as between two parallel plates, separated by a distance ∆d, we have 

V E d∆ = ∆                                                                       (6) 

and we can combine Eq(5) and (6) to give the useful relations 

EPE q E d F d W∆ = ∆ = ∆ =                                                   (7) 

where the last part recognizes that qE = F, and then we have the work done, i.e., force times distance, 
equal to the change in PE, as we have seen before (with gravitation).  
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ELECTRIC CURRENT, RESISTANCE, POWER 
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Electrical current is motion of charges that is created by an applied electric field. Quantitatively it is the 
rate of this motion, or the net charge passing some point in a circuit per unit time. The units will then be 
coulombs per second, which we call amperes (A). "Current flow" is redundant; current is a flow, of charge. 
 
Much of the energy put into the charges (electrons, usually) goes into randomly-directed kinetic energy 
and thus collisions with the atoms in the conductor material; this energy raises the temperature of the 
material, rather than increasing the amount, or speed, of the charge flow. This situation is accounted for 
in the "resistance" of the conducting material, 
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that is, the resistance varies directly with the length, and inversely as the cross-sectional area of a 
conductor. Most conductors take the form of wires, which of course are elongated circular cylinders. 
 
Ohm's Law actually says that the resistance of a conductor does not depend on the current through it, nor 
on the applied voltage. If this is so, we can write the simple relation that is usually called Ohm's Law: 

V I R=                                                                            (8) 

Here, the units are volts = (amperes)(ohms). Be aware that this linear relation does not hold for all 
possible conducting materials (or over all voltage or current ranges)! In some cases, increasing the 
current causes changes in resistance, perhaps via temperature effects.  
 
As for power, we can write several relations; the first part uses the idea of power as the rate of change of 
energy, and Eq(5): 

2
2PE q V V

P I V P I V I R
t t R

∆ ∆= = ⇒ = = =
∆ ∆

                    (9) 

These equivalent expressions give the power in a circuit, which can be thought of as the rate of energy 
transfer in the circuit. The units of power are watts, so a watt = (ampere)(volt); power = (current)(voltage). 
 
Usually, a circuit's purpose is to transfer energy from a source, like a battery, to a sink, like a light bulb. 
Electrical energy is converted to light (and heat) energy, and some is lost to the heating of the conducting 
wires. The lower the resistance of those wires, the less heating loss there will be, for a given current. 

 
The energy used over some time interval (T1 to T2) is given by 
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if the power is not constant across this interval. If it is constant, then we just have 

 2 1( )energy P T T= −  

There is a device at your home that, in effect, does the integral above. It is the "kilowatt-
hour meter" that is read each month by the "power" company. But really, they are selling 
energy, not power! This integration is necessary because the power use of your home is 
far from constant. The kWh meter reading always increases, unless your home generates 
electrical energy and sends it out so that the meter would run backward. Watch the disk 
in the meter in the summer, when the A/C comes on... 
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BASIC ELECTRIC CIRCUIT ANALYSIS (DC; SINGLE VOLTAGE SOURCE ) 
 
►Find effective resistance of circuit:                                                                                                   (10) 
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We use the equations above to combine the resistors; there are n series resistors, and there may be 
several parallel groups, each of m resistors, where m may be different for each parallel group. The last 
expression, for the resistance of a parallel group, is for use on your calculators (use the x-1 key, and don't 
forget the parentheses). A couple of special cases for parallel resistors: 
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►Find total current in circuit: 
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This of course is just Ohm's Law, solved for the current. V is in volts, I is in amperes, R is in ohms. 
 
 
►Find total power dissipation in circuit: 
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►Find voltage drop (potential difference) across res istor(s): 

totalV I R∆ =                                                                     (13) 

Here, R is either the resistance of a given series resistor in the circuit, or the combined resistance of a 
parallel group. If the latter, then this voltage drop is the same for all resistors in that group. The sum of the 
voltage drops around the circuit must equal the supply voltage. This can be a check of your calculations. 
 
 
►Find current through and power dissipation in the j -th resistor in a parallel group: 
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►Find current through and power dissipation in the i -th resistor in series: 

2
i total i total iI I P I R= =                                                    (15) 

The sum of the power dissipated in all the individual resistors, whether configured in series or parallel, 
around the circuit must equal the total power dissipation of the circuit, found above, in Eq(12). This is also 
a good check on your calculations. 
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MAGNETIC FORCE 

mag, charge sin( )F q v B θ=                                                         (16) 

This is the magnitude of the force due to a magnetic field of strength B, in Tesla, N / (A m), on a charge q 
(coulombs) moving with velocity v (m / s), which is directed at some angle θ to the direction of the 
magnetic field. For most problems it is stated that the motion is perpendicular to the field, so that the sine 
term has no effect; sin(90) = 1. If it isn't explicitly stated otherwise, assume θ is 90 degrees. Clearly, the 
magnitude of this force is greatest when the charge moves at right angles (perpendicular) to the field B. 
 
If we consider that the current in a length L of wire that is immersed in a magnetic field is the movement 
of many charges along the wire, it can be shown that for this case we will have 

mag, wire sin( )F L I B θ=                                                          (17) 

where I is the current in the wire. From a dimensional analysis we can see how this works: qv is 
coulombs-meters/sec and LI is meters-amperes, or meters-coulombs/sec.  
 

In a more advanced physics course we would learn that the equations above are based 
on one of two types of vector products; these are used extensively in physics. When we 
multiply vector quantities we can get either a scalar result, or a vector result. The scalar, 
or "dot" product, is something we used in calculating work, although we didn't call the 
product by that name. This was when the result was the product of the two vectors' 
magnitudes, multiplied by the cosine of the angle between them. 
 
The vector, or "cross" product, is what we are really doing with the magnetic field 
calculations. This is written like so, where the bold letters are vectors: 

 mag q= ×F v B  

The magnitude of the resulting vector is as we have written above. The direction of that 
vector is found using a "right-hand rule," and the product vector, here the force F, is 
perpendicular to the plane containing the two vectors being multiplied. This is very 
important-- since the force is perpendicular to the velocity, then no work can be done by 
the magnetic field, and so the object's speed cannot be changed by this field. Only the 
direction of the motion of a charged particle can be changed by a magnetic field! It turns 
out, also, that the sign of the charge q does affect the direction of F for a point charge, 
but, interestingly, it has no effect for the wire (University Physics, 9th, p881). 

 

xmat ymat,( )  
Vector electric field for two negative charges and one positive charge. 

++++    

----    ----    
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E & M  EQUATION  SUMMARY 
 
 
Electrostatics                                                                     k = 9 x 109 N m2 / C2                 e = 1.6 x 10-19 C 
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Potential difference 
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Current, Ohm's Law, Power, Energy 
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Basic DC circuit analysis (single voltage source) 
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                      current, power in j-th parallel resistor                                                          current, power in i-th series resistor 

 
 
Magnetic force 
 

                         mag, charge sin( )F q v B θ=                             mag, wire sin( )F L I B θ=             

assume θ is 90 degrees unless otherwise specified 


