You have been given a dynamic right angled triangle ABC.
Drag corner A. What happens to your triangle?

Now drag corner C. What happens to your triangle?

Set your triangle so that angle α is 45°. Keeping the angle at 45°, vary the lengths of CB and AC. Record your findings in the table below. Fill in the fourth column too.
Now fix angle α at another angle and do the same. For each angle fill in three rows of the table.

Angle α	Length CB	Length AC	Length CB / Length AC
45°			
45°			
45°			

What do you notice?
\qquad
\qquad
Using a calculator, type in: $\sin 45=$
What do you notice about your answer?
Now do the same for your other angles. What do you notice?

Now you've discovered what sin means, investigate the other sides and fill in the table with your findings.

Angle α	Length BA	Length AC	Length BA/ Length AC

Do your findings relate to a button like sin on your calculator?
Using what you have learnt, find the length of sides x and y .

Check your answers using the Geogebra triangle. Were you right?

