Las cónicas.

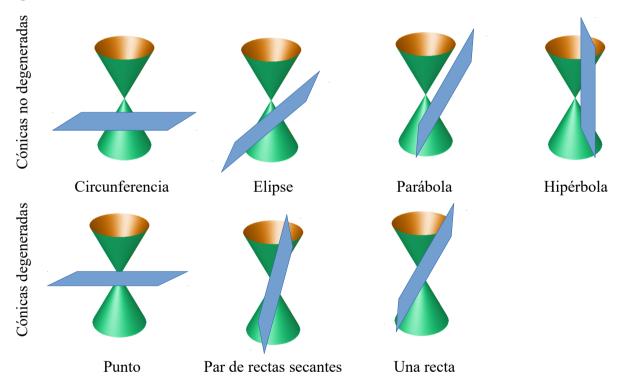
Las cónicas como secciones de un cono.

Cuando una recta g que corta a otra recta fija e, gira alrededor de ella genera una **superficie cónica**.

- La recta móvil **g** se llama generatriz.
- La recta fija e se denomina eje.
- El punto de corte de las rectas g y e se denomina vértice V.

Al cortar la superficie cónica con un plano se obtiene las secciones cónicas. Si el plano no contiene al vértice V de la superficie cónica, decimos que la es una **sección cónica o cónica no degenerada**, y si lo

contiene decimos que es una **sección cónica o cónica degenerada**. Pudiendo obtener las siguientes secciones cónicas



La circunferencia

Definición

La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro.

Elementos de la circunferencia

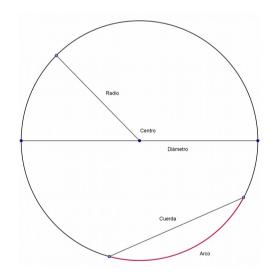
Radio.- Cualquier segmento que une el centro con un punto de la circunferencia.

Cuerda.- Cualquier segmento que une dos puntos de la circunferencia.

Diámetro.- Cualquier cuerda que pasa por el centro de la circunferencia.

Arco.- Cada una de las partes en que una cuerda divide circunferencia. A cada cuerda le corresponden dos arcos; en general, uno de menor longitud que otro.

Si las longitudes de los dos arcos son iguales, el arco se denomina circunferencia y la cuerda es su diámetro



Posiciones relativas

Dada una circunferencia C = C(O,r) de centro O y radio r

- Si P es un punto, se cumple
 - Si $d(P, O) > r \Rightarrow P$ es un punto exterior a la circunferencia
 - Si $d(P, O) = r \Rightarrow P$ es un punto de la circunferencia
 - Si $d(P, O) < r \Rightarrow P$ es un punto interior de la circunferencia

- Si s es una recta, se cumple
 - Si $d(s, O) > r \Rightarrow s$ es una recta exterior a la circunferencia
 - Si $d(s, O) = r \Rightarrow s$ es una recta tangente a la circunferencia
 - Si $d(s, O) < r \Rightarrow s$ es una recta secante de la circunferencia
- Sea la circunferencia C'=C(O',r'), d=d(O,O'), $M=max\{r,r'\}$, $m=min\{r,r'\}$, se cumple:

\square Si d > \underline{r} + \underline{r} ' C y C' son exteriores.	\square Si d = $\underline{x}+\underline{x}$ C y C' son tangentes exteriores.
\square Si M-m < d < r+r' C y C' son secantes.	\square Si d = M-m C y C' son tangentes interiores.
\square Si $0 < d < M$ -m C y C' son interiores.	\square Si d = 0 C y C' son concéntricas.

Estudio analítico de la circunferencia

Relación geométrica

Como la circunferencia es el lugar geométrica de los puntos del plano que equidistan de un punto fijo llamado centro, si P es un punto cualquiera de la circunferencia, C es el centro y r el radio, se verifica

$$d(P, C)=r$$

Relación analítica

Sea $R = \{O; \vec{i}, \vec{j}\}O; \vec{i}, \vec{j}$ un sistema de referencia del plano, C = C(a, b) el centro de la circunferencia de radio r, y P(x, y) un punto cualquiera de ella; de la relación geométrica se obtiene

$$(x-a)^2+(y-b)^2=r^2$$

que se denomina ecuación analítica de la circunferencia ce centro C(a, b) y radio r.

Además, quitando paréntesis e igualando a cero obtenemos la ecuación

$$x^2+y^2-2 a x-2 a y+a^2+b^2-r^2=0$$

Que si hacemos

$$D=-2 a$$
 ; $E=-2 b$; $F=a^2+b^2-r^2$

Obtenemos la ecuación

$$x^2 + y^2 + Dx + Ey + F = 0$$

y cuya relación con las coordenadas del centro y el valor del radio de la ecuación analítica es

$$C(a,b) = \left(-\frac{1}{2}.D, -\frac{1}{2}.E\right)$$
 $r = \frac{1}{2}\sqrt{D^2 + E^2 - 4.F}$

Ejemplos.-

• La ecuación de la circunferencia de centro C(3,2) y radio 4 es

$$(x-3)^2+(y-2)^2=4^2$$

O también

$$x^2 + y^2 - 6x - 4y - 3 = 0$$

• El centro y el radio de la circunferencia de ecuación $x^2 + y^2 - 4x + 2y - 4 = 0$, es

$$C(a, b) = \left(-\frac{1}{2}.(-4), -\frac{1}{2}.2\right) = C(2, -1)$$

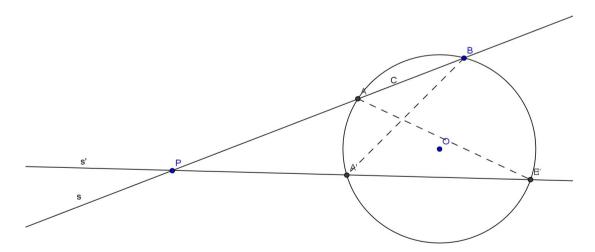
$$r = \frac{1}{2}\sqrt{(-4)^2 + 2^2 - 4 \cdot (-4)} = \frac{1}{2}\sqrt{36} = 3$$

Potencia de un punto respecto de una circunferencia

Dada una circunferencia C = C(O,r) = C(O(a,b),r). Si por un punto P del plano trazamos dos rectas s y s', secantes a C,, y sean A, B y A', B' los puntos de intersección de las rectas s y s' con C, respectivamente.

Los triángulos PAB' y PA'B son semejantes, pues tiene un ángulo común en \hat{P} , y los ángulos \hat{B} y \hat{B}' son iguales, por ser inscritos en C, y abarcar el mismo arco, luego

$$\frac{PA}{PA'} = \frac{PB}{PB'} \Rightarrow PA. PB = PA'. PB'; \text{ siendo} \quad PX = \begin{cases} +|\overrightarrow{PX}| \text{ si } P \text{ es exterior a } C \\ -|\overrightarrow{PX}| \text{ si } C \text{ no es exterior a } C \end{cases}$$



Si trazamos otra recta s" secante a C que pase por P y corte a C en los puntos A" y B", tendríamos, análogamente

$$PA. PB = PA'. PB = P.A''. PB' = constante$$

Esta constante, se denomina potencia de P respecto de C, y se designa por $Pot_c(P)$

Hay que observar que:

- Si P es un punto interior de la circunferencia $Pot_C(P) < 0$
- Si P es un punto exterior de la circunferencia $Pot_C(P)=0$
- Si P es un punto exterior de la circunferencia $Pot_C(P) > 0$

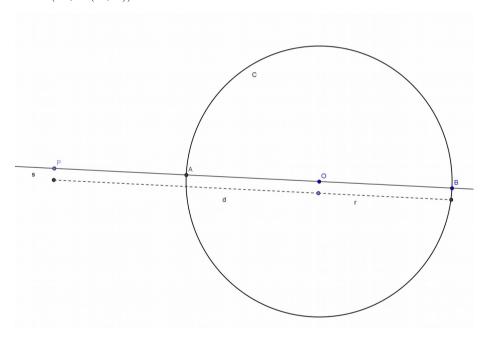
Definición geométrica

$$Pot_C(P) = PA \cdot PB = PA' \cdot PB' = PA'' \cdot PB' = constante$$

Donde, $\{A, B\}, \{A', B\}, \{A'', B'\}$ son los puntos de intersección de las rectas s, s'ys'' secantes a la circunferencia C, que pasan por el punto P.

Definición analítica

Si C = C(O(a, b), r) y $P = P(x_0, y_0)$ y s es una recta secante a C que pasa por P y por O, y d = distancia(P, O(a, b))



Se cumplirá

$$Pot_C(P) = PA. PB = (d-r).(d+r) = (x_0 - a)^2 + (y_0 - b)^2 - r^2$$

En resumen, para hallar la potencia de un punto respecto de una circunferencia, se sustituye las coordenadas del punto en la ecuación de la circunferencia.

Ejemplo.- La potencia del punto P(1,7) respecto de la circunferencia de ecuación $C: x^2 + y^2 3 x + 5 y - 3 = 0$ es

$$Pot_C(P) = 1^2 + 7^2 - 3 \cdot 1 + 5 \cdot 7 - 3 = 79$$

Eje radical de dos circunferencias. Centro radical de tres circunferencias.

Eje radical de dos circunferencias

Se llama **eje radical de dos circunferencias** al lugar geométrico de todos los puntos del plano que tiene igual potencia respecto de ambas

Para calcular el eje radical de dos circunferencias

$$C: x^2 + y^2 + Dx + Ey + F = 0$$

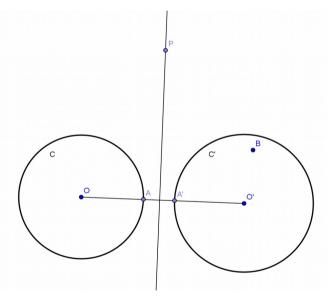
$$C': x^2 + y^2 + D'x + E'y + F' = 0$$

Si el punto P(x,y) pertenece al eje radical, tendrá la misma potencia respecto de las dos circunferencias; es decir

$$x^{2}+y^{2}+Dx+Ey+F=x^{2}+y^{2}+D'x+E'y+F'$$

Que operando y simplificando se obtiene ka ecuación del eje radical de C y C', que es

$$(D-D')x+(E-E')y+F-F'=0$$



Si las circunferencias C y C' son secantes, el eje radical es la recta que pasa por los puntos de intersección de C y C'.

Centro radical de tres circunferencias

Se llama centro radical de tres circunferencias a un punto del plano que tiene igula potencia de tres circunferencias.

Dicho punto se existe, se obtiene como intersección de los ejes radicales de la circunferencias.

Ejemplo.- Para hallar el centro radical de las circunferencias

$$C: x^2 + y^2 + 3x - y - 2 = 0$$

$$C': x^2+y^2-2x+5y-3=0$$

$$C'': x^2 + y^2 - 4x - 3y + 5 = 0$$

Hallamos, el eje radical de C y C':

$$5x - 6y + 1 = 0$$

Y el eje radical de C y C'':

$$7x+2y-7=0$$

Y resolviendo el sistema de ecuaciones

$$5x - 6y + 1 = 0$$

$$7x + 2y - 7 = 0$$

Obtenemos, por solución

$$\left(\frac{10}{13}, \frac{21}{26}\right)$$

✓LAS CÓNICAS COMO LUGARES GEOMÉTRICOS.

Si consideramos el plano afín euclídeo, dado un punto f (denominado FOCO), una recta D (denominada DIRECTRIZ) y un número real e (denominado EXCENTRICIDAD). Denominamos CÓNICA C al conjunto de puntos del plano A cuya distancia al foco es igual al producto de e por su distancia a la directriz. Es decir:

$$C = \{ p \in A : d(p,f) = e \cdot d(p,D) \}.$$

Teniendo en cuenta que hay varios tipos de cónicas, según el valor de su excentricidad, podemos clasificar:

Como resumen, en el caso de las ecuaciones reducidas de las cónicas, los correspondientes focos, directrices y excentricidades vienen dadas por:

CÓNICAS	FOCOS	DIRECTRICES	EXCENTRICIDADES	
Elipse \equiv d (P,F) + d(P,F') = 2.a				
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	(±c, 0) (0,±c)	$x = \pm \frac{a^2}{c}$	$e = \frac{c}{a} < 1; a^2 = b^2 + c^2$	
$Parábola \equiv d(P,F) = d(P,D).$				
$y^2 = 2 p x$	$\left(\frac{p}{2}, 0\right)$	$x = -\frac{p}{2}$. 1	
$x^2 = 2 p y$	$\left(0\frac{p}{2}\right)$	$\lambda = -\frac{1}{2}$	e = 1	
$Hipérbola \equiv d (P,F) + d(P,F') = 2.a$				
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(±c, 0) (0,±c)	$x = \pm \frac{a^2}{c}$	$e = \frac{c}{a} < 1$; $a^2 + b^2 = c^2$	

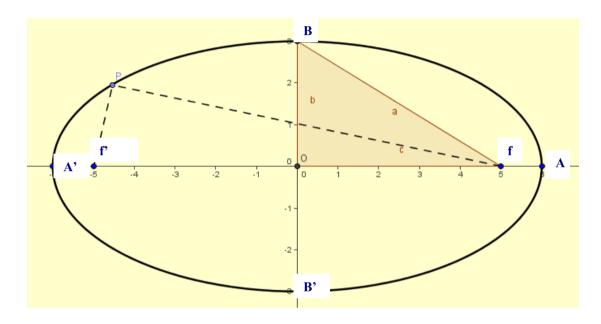
Como ejemplo de cónicas, estudiaremos los casos particulares de la parábola, la elipse y la hipérbola en sus formas canónicas *(tomando un sistema de referencia adecuado)*.

ELIPSES.

En el plano afin real E, se llama ELIPSE a la CÓNICA que tiene por focos los puntos f(C) y f'(C') (situados a una distancia dist(f,f') = 2.c), y cuya constante es $2a \in R$ (siendo a > c), al lugar geométrico de los puntos P(x,y) de E, tales que

$$dist(P,f) + dist(P,f') = 2.a$$

Se denominan EJES de la elipse (por ser sus ejes de simetría ortogonales), a la recta que pasa por f y f' (de segmento mayor) y a su mediatriz (de segmento menor).



El punto de intersección de los ejes de la elipse, es su CENTRO, y los puntos de intersección con la elipse se denomina vértices (*A y A ' para el eje mayor*, *B y B ' para el eje menor*).

De la definición se desprende que la ELIPSE es simétrica respecto de los segmentos AA' y BB'. De donde se deduce:

$$dist(A,f) + dist(A,f') = dist(A',f) + dist(A',f') = 2.a \text{ (por definición)} =$$

$$= dist(O,A) + dist(O,A') = 2. dist(O,A)$$

$$\Rightarrow dist(O,A) = dist(O,A') = a.$$

Y como los puntos B y B', son simétricas respecto de los focos f y f':

$$dist(B,f) = dist(B,f') = dist(B',f) = dist(B',f') = a$$

Denominando:

$$dist(O,B) = dist(O,B') = b.$$

Y teniendo en cuenta que

$$dist(O,f) = dist(O,f') = c.$$

Será: $a^2 = b^2 + c^2$

Entonces, tomando el caso particular, de que los ejes mayores y menores de la elipse sean respectivamente el eje X e Y, de un sistema de referencia cartesiano.

Los focos **f** y **f** ' **tendrán de coordenadas (c,0)** y (-c,0) respectivamente. Y para cada punto P de la elipse, la condición:

d (P,f) + d (P,f') = 2.a.

$$\Rightarrow \sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2 \cdot a$$

Y elevando, ambas expresiones al cuadrado, se obtiene:

$$(x-c)^{2} + y^{2} + (x+c)^{2} + y^{2} + 2 \cdot \sqrt{(x-c)^{2} + y^{2}} \cdot \sqrt{(x+c)^{2} + y^{2}} = 4 \cdot a^{2}$$

$$\Rightarrow x^2 + y^2 + c^2 + \sqrt{(x^2 + y^2 + c^2)^2 - 4 \cdot x^2 \cdot c^2} = 2 \cdot a^2$$

$$\Rightarrow \sqrt{(x^2 + y^2 + c^2)^2 - 4 \cdot x^2 \cdot c^2} = 2 \cdot a^2 - (x^2 + y^2 + c^2)$$

Y elevando al cuadrado ambos miembros y simplificando se obtiene:

$$\Rightarrow -x^2 \cdot c^2 = a^4 - a^2 \cdot \left(x^2 + y^2 + c^2\right)$$

$$\Rightarrow (a^2 - c^2) \cdot x^2 + a^2 \cdot y^2 = a^2 \cdot (a^2 - c^2)$$

Y dividiendo ambos miembros por $a^2 \cdot (a^2 - c^2)$, y teniendo en cuenta que

 $b^2 = a^2 - c^2$, se obtiene la ECUACIÓN REDUCIDA DE LA ELIPSE:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Razonado análogamente, si tomamos el caso particular, de que los ejes mayores y menores de la elipse sean respectivamente el eje Y y X, dicha ecuación queda:

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

La **excentricidad e**, viene determinada por el cociente, **c/a** que como es de esperar es menor que 1, y geométricamente indica el grado de achatamiento de la elipse.

La ELIPSE es una curva acotada simétrica respecto de los ejes de simetría, pues si consideramos por ejemplo la elipse

$$C = \frac{x^2}{h^2} + \frac{y^2}{a^2} = 1$$
 Si $(x,y) \in C \implies (-x,y), (x,-y) \in C.$

El centro de la elipse es el punto de intersección de los ejes de simetría, cuyos puntos de corte con los ejes son: (a,0), (-a,0), (0,b), (0,-b) ó (0,a), (0,-a), (b,0), (-b,0)

Si desplazamos el centro de la Elipse al punto O = (p,q), la ecuación de la Elipse puede

ponerse en alguna de las formas siguientes:

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$$

$$\frac{(x-p)^2}{b^2} + \frac{(y-q)^2}{a^2} = 1$$

Parábolas.

En el plano afín real E, se llama PARÁBOLA a la CÓNICA que tiene por foco al punto f(F1)

y por directriz a la recta D(F $_2$ A) (*situada a una distancia* p > 0 *del foco*), al lugar geométrico de los puntos P(x,y) de E que equidistan de f y de D.

Debido a que los puntos P de la PARÁBOLA, equidistan de f y D, su excentricidad e=1.

Se denomina **eje de simetría** (ortogonal) a la perpendicular a D, que pasa por f. Y se denomina, **vértice** (**o**) a la intersección del eje de simetría con la parábola.

Además, se cumple: $\operatorname{dist}(\mathbf{o},\mathbf{f}) = \operatorname{dist}(\mathbf{o},\mathbf{D}) = \frac{p}{2}$.

Por tanto, las coordenadas de f vendrán dadas por f =

(p/2,0) y la ecuación de la directriz será D: $x = -\frac{p}{2}$.

La distancia de un punto P(x,y) a la recta D, vendrá dada por:

$$dist(P,D) = \left| x + \frac{p}{2} \right|$$

Y como P será un punto de la parábola si:

$$dist(P,f) = dist(P,D)$$
 $\Rightarrow \sqrt{\left[X - \frac{p}{2}\right]^2 + y^2} = \left|x + \frac{p}{2}\right|$

Elevando ambas expresiones al cuadrado y simplificando se obtiene:

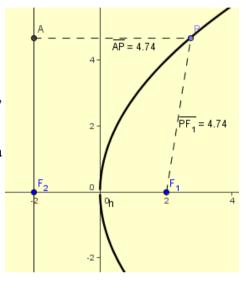
$$y^2 = 2.p.x$$

Razonado, análogamente, si tomamos como eje de simetría el eje y, dicha ecuación queda:

$$x^2 = 2.p.y$$

Hay que observar que la parábola carece de centro, no está acotada, y carece de asíntotas. Además, es simétrica respecto del eje de simetría, y tiene dos ramas infinitas, pues si consideramos por ejemplo la parábola C de ecuación:

$$y^2 = 2.p.x$$
, $si(x,y) \in C \implies (x,-y) \in C$.



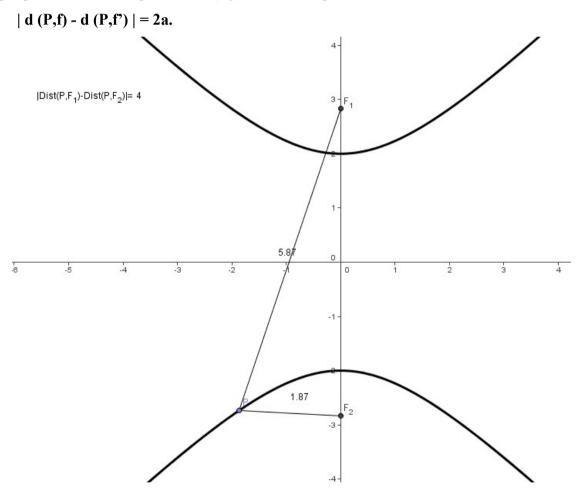
$$si x \rightarrow +\infty \implies y \rightarrow +\infty.$$

Si desplazamos el centro de la Parábola al punto O = (p,q), la ecuación de la Parábola puede ponerse en alguna de las formas siguientes:

$$(y-b)^2 = 2.p.(x-a)$$
 ó $(x-a)^2 = 2.p.(y-b)$.

Hipérbolas.

En el plano afín real E, se llama HIPÉRBOLA a la CÓNICA que tiene por focos al los puntos f y f' (situados a una distancia d (f,f') = 2c), y cuya constante es $2a \in R$ (siendo 0 < a < c), al lugar geométrico de los puntos P = (x,y) de A, tales que



Se denominan EJES de la hipérbola (*por ser sus ejes de simetria ortogonales*), a la recta que pasa por f y f' (*eje focal o real*) y a su mediatriz (*eje secundario o imaginario*). El punto de intersección O de los ejes de la hipérbola es su centro de simetría.

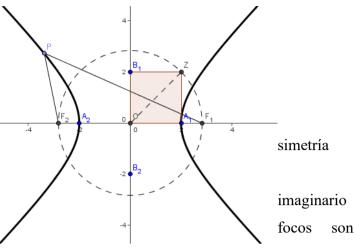
El eje real corta a la hipérbola en dos puntos, A y A' llamados vértices reales; y se verifica que

$$d(O,A) = d(O,A') = a$$
.

De la definición se desprende que la hipérbola es simétrica respecto de sus dos ejes de simetría. Y se deduce:

$$d(A,f') - d(A,f) =$$
= $d(A,A') + d(A',f') - d(A,f) =$
= $2.a$ (por definición) =
= $d(O,A) + d(O,A') = 2.d(O,A)$.

Tomando el caso particular, de que el eje de real sea el je X y el vértice el origen de coordenadas. Teniendo en cuenta, que eje equidistan de f y f', las coordenadas de los (c,0) y (-c,0) respectivamente.



Los puntos $(0,\pm b)$, se denominan extremos imaginarios, y son tales que, su distancia (b) al punto O cumple:

$$a^2 = b^2 + c^2$$

Donde

$$a = d(A,O) = d(A',O)$$
 y $c = d(f,O) = d(f'O)$.

Luego, un punto P(x,y) pertenece a la hipérbola, si cumple:

$$\sqrt{(x-c)^2 + y^2} - \sqrt{(x+c)^2 + y^2} = 2 \cdot a$$

Y elevando, ambas expresiones al cuadrado, se obtiene:

$$(x-c)^{2} + y^{2} + (x+c)^{2} + y^{2} - 2 \cdot \sqrt{(x-c)^{2} + y^{2}} \cdot \sqrt{(x+c)^{2} + y^{2}} = 4 \cdot a^{2}$$

$$\Rightarrow x^{2} + y^{2} + c^{2} - \sqrt{(x^{2} + y^{2} + c^{2})^{2} - 4 \cdot x^{2} \cdot c^{2}} = 2 \cdot a^{2}$$

$$\Rightarrow \sqrt{(x^2 + y^2 + c^2)^2 - 4 \cdot x^2 \cdot c^2} = (x^2 + y^2 + c^2) - 2 \cdot a^2$$

Y elevando al cuadrado ambos miembros y simplificando se obtiene:

$$\Rightarrow x^2 \cdot c^2 = a^2 \cdot (x^2 + y^2 + c^2) - a^4$$

$$\Rightarrow (c^2 - a^2) \cdot x^2 - a^2 \cdot y^2 = a^2 \cdot (c^2 - a^2)$$

Dividiendo ambos miembros por a^2 (c^2 - a^2), y dado que b^2 = (c^2 - a^2), se obtiene la **ecuación** reducida de la hipérbola:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Razonado análogamente, si tomamos el caso particular, de que el eje de simetría real sea el eje Y, dicha ecuación queda la **ecuación reducida de la hipérbola** (*de la hipérbola conjugada*):

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

La excentricidad e, viene determinada por **c/a** que como es de esperar es mayor que 1, y geométricamente indica el grado de achatamiento de la hipérbola.

Hay que observar, que es simétrica respecto de los ejes de simetría.

Pues si consideramos por ejemplo la hipérbola.

$$C \equiv \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \qquad \text{Si } (x,y) \in C \quad \Rightarrow \qquad (-x,y), (x,-y) \in C.$$

Además es una curva no acotada con dos ramas infinitas, y sus puntos de corte con el eje real son los vértices A y A'.

Dada la hipérbola de ecuaciones reducidas:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Simplificando, se obtiene:

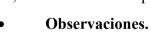
$$y = \pm \sqrt{\frac{b^2}{a^2} x^2 - \frac{b^2}{a^2} a^2} = \pm \frac{b}{a} x \sqrt{1 - \frac{a^2}{x^2}}$$

Que cuando $x \rightarrow \pm \infty$.

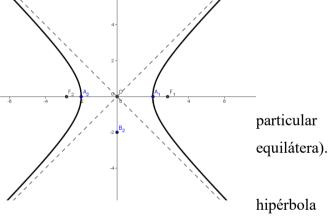
Se cumple:

$$y = \pm \frac{b}{a} x$$

Que son sus asíntotas (en el caso de que a = b, se denomina hipérbola



En el caso de la elipse y de la



en forma reducida, la directriz D viene determinada por la rectas

$$x = \pm \frac{a^2}{c}$$

Pues, basta tomar, por ejemplo los puntos B y B' (del eje menor de la elipse o del eje imaginario de la hipérbola), y teniendo en cuenta:

$$d(B f) = d(B f,) = a$$

 $d(B f) = e d(B,D) = \frac{c}{a} d(B;D)$
 $d(B f,) = \frac{c}{a} d(B D)$

Se obtiene que:

$$d(B,D) = d(B,D) = \frac{a^2}{c}$$