## Fonction réciproque

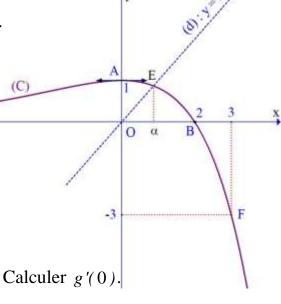
**(1)** 

S.V + S.G

**1.** La courbe (C) ci-contre est la courbe représentative, dans un repère orthonormé (O; i; j), d'une fonction f continue sur IR.

**Indications**:

- La courbe (C) admet en son point A (0; 1) une tangente horizontale, passe par F (3; -3) et coupe l'axe des abscisses en B (2; 0).
- (C) coupe la droite d'équation y = x au point E d'abscisse  $\alpha$ .
- f(x) tend vers  $-\infty$  lorsque x tend vers  $+\infty$ .
- 1) Reproduire la courbe (C).
- 2) Démontrer que f admet sur [0;+∞ [ une fonction réciproque g, et donner le domaine de définition de g.
- 3) Résoudre l'inéquation  $g(x) < \alpha$ .
- 4) Sachant que la tangente (T) à (C) en B est parallèle à (AF). Calculer g'(0).
- 5) a- Dresser le tableau de variations de g.
  - b-Tracer la courbe représentative (G) de g dans le repère (O;  $\vec{i}$ ;  $\vec{j}$ ), en justifiant la construction.
- **2.**On considère la fonction f définie par  $f(x) = \frac{x^2 + 1}{x}$ .
- 1) Montrer que f admet dans l'intervalle ] 0 ; 1] une fonction réciproque g dont on déterminera le domaine de définition.
- 2) On désigne par (F) et (G) les courbes représentatives de f et g dans un repère  $(O; \vec{i}; \vec{j})$ , et par A le point de (G) d'abscisse  $\frac{5}{2}$ .
  - a Trouver l'équation de la tangente à (G) en A.
  - b Montrer que  $(F) \cap (G) = \emptyset$ .
- **3.** A- On considère la fonction u définie par  $u(x) = x^3 + x 1$ .
  - 1) Montrer que l'équation u(x) = 0 admet une racine unique  $\alpha$ .
  - 2) Vérifier que :  $0.6 < \alpha < 0.7$ .
  - B La courbe (C) ci-contre, est la courbe représentative, dans un repère orthonormé (O;  $\vec{i}$ ;  $\vec{j}$ ), de la fonction f définie par  $f(x) = \sqrt{\frac{1-x}{x}}$ .
    - 1) a- Démontrer que f admet sur ] 0; 1] une fonction réciproque g. Indiquer le domaine de g.
      - b- Résoudre l'inéquation  $g(x) \ge \frac{1}{2}$ .
      - c- Exprimer g(x) en fonction de x.
    - 2) a- Tracer la courbe représentative (C') de la fonction g, dans le repère (O; i; j).
      - b- Montrer que (C) et (C ') ont un point commun d'abscisse  $\alpha$  .



(C)

0.5

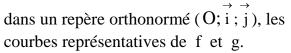
0

## (Uniquement pour la série S.G)

**1.** Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, *en justifiant*, la réponse qui lui correspond.

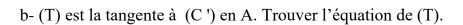
|    |                                                                                          | Réponses              |                   |                   |
|----|------------------------------------------------------------------------------------------|-----------------------|-------------------|-------------------|
|    | Questions                                                                                | a                     | b                 | c                 |
| 1  | $\cos^2(\frac{1}{2}\arccos x) =$                                                         | $\frac{1+x}{2}$       | $1+\frac{x}{2}$   | $\frac{1}{2}x$    |
| 2  | cos(2arcsinx) =                                                                          | 1-2x                  | $1-2x^2$          | $2x^2-1$          |
| 3  | En $radian$ : $\arctan \frac{1}{2} + \arctan \frac{1}{3} =$                              | $\frac{\pi}{6}$       | $\frac{\pi}{4}$   | $\frac{\pi}{3}$   |
| 4  | $f(x) = \arccos \frac{1-x^2}{1+x^2}, \text{ et } x > 0,$ $alors f(x) =$                  | 2arctan x             | 2arccos x         | 2arcsin x         |
| 5  | $\arccos\left(\cos\frac{6\pi}{5}\right) =$                                               | $\frac{6\pi}{5}$      | $\frac{4\pi}{5}$  | $\frac{2\pi}{5}$  |
| 6  | $\arcsin\left(\sin\frac{7\pi}{5}\right) =$                                               | $\frac{7\pi}{5}$      | $-\frac{3\pi}{5}$ | $-\frac{2\pi}{5}$ |
| 7  | Une solution de l'équation $\cos(\arcsin\frac{1}{x}) = \frac{\sqrt{3}}{2}  \text{est} :$ | $\frac{-2}{\sqrt{3}}$ | 1                 | 2                 |
| 8  | Une solution de l'équation arcsin $1 = \arcsin x + \arcsin \frac{3}{5}$ est :            | $\frac{1}{2}$         | <u>4</u> 5        | - <del>4</del> 5  |
| 9  | Une solution de l'équation arctan $\frac{1}{2}$ + arctan x = $\frac{\pi}{4}$ est :       | $\frac{3}{4}$         | 2                 | $\frac{1}{3}$     |
| 10 | Une solution de l'équation $\arctan (2x - 1) + \arctan x = \frac{3\pi}{4} \text{ est :}$ | 2                     | -1                | 3                 |
| 11 | Une solution de l'équation $\arcsin (3x - 1) + \arcsin x = \frac{\pi}{2} \text{ est } :$ | $\frac{2}{5}$         | $\frac{3}{5}$     | $-\frac{3}{5}$    |

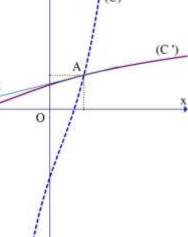
- 1) Montrer que f admet une fonction réciproque g.
- 2) Les deux courbes (C) et (C') ci-contre sont,





a- Calculer les coordonnées du point A commun à (C) et (C').





## **3.** Simplifier les expressions suivantes :

- a) cos (2arccos x).
- b) cos (2arctan x).
- c) sin (2arccos x).
- d)  $\sin^2\left(\frac{1}{2}\arccos x\right)$ .

## **4.** Calculer la dérivée de la fonction f dans chacun des cas suivants :

a) 
$$f(x) = (\arcsin 2x)^3$$
.

b) 
$$f(x) = \frac{1}{\arctan\sqrt{x}}$$
.

**5.** Calculer les limites suivantes :

a) 
$$\lim_{x\to 0} \frac{\arcsin 2x}{x}$$
.

b) 
$$\lim_{x\to 0} \frac{\arctan 3x}{\arcsin x}$$

b) 
$$\lim_{x \to 0} \frac{\arctan 3x}{\arcsin x}$$
. c)  $\lim_{x \to +\infty} x \left( \frac{\pi}{2} - \arctan x \right)$ .

**6.** Soit f la fonction définie pour  $x \ne 0$  par  $f(x) = \arctan x + \arctan \frac{1}{x}$ .

En calculant f'(x), démontrer que si x > 0 on a :  $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ .