
Next we explore the behavior of these velocity components as the constant k becomes small.

Note that the constant k depends on both the drag coefficient and the mass. The larger the mass, the 
smaller is k, and the larger the drag coefficient, the larger is k. So, for a heavy object, the constant k is 
small, and the effect of drag is minimal.
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These are readily solved, using a convolution integral, or Laplace transforms, integrating factors, etc. The 
velocity results are
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If we use a first-order air resistance, proportional to the velocity, then the ODE's become much simpler:

These ODE's are now first order (in the velocities), but are still coupled, and nonlinear. So we aren't going 
to make much progress with this, analytically. (Of course these are readily solved numerically.)

dvy

dt
g− k vx

2
vy

2+



 vy−=

dvx

dt
k vx

2
vy

2+



− vx=

To show the coupling more explicitly, we can also write
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where both the magnitude v and direction φ of the velocity are functions of time. Since v depends on both 
the x- and y-component of velocity, these differential equations are coupled. So we have a pair of 
second-order, nonlinear, coupled differential equations. We can re-write these as
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The force due to air resistance can be modeled as either first- or second order in the velocity. For relatively 
small objects moving in air at modest velocities, we can use first order, and that will be the approach here. 
However, just to show what happens, consider the second-order differential equations. We have a force 
which opposes the motion along the current direction of the velocity vector (which of course is 
continuously changing). So, in components, we have from Newton's second law (the mass has been 
divided out and incorporated into the constant k)
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To find the x and y positions as a function of time, we integrate the velocities; the initial position in x is 
taken to be zero:
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Checking the limit again, we recover the no-drag result for the time of maximum y (the vertex):
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Next we attempt to find the time of maximum y, by setting the y velocity to zero; this gives:
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so we have the expected results from the no-drag situation. Note that k cannot be exactly zero. Next is a 
plot of these velocity components, for k = 1.5. The x velocity (bold line) approaches zero, and the y 
velocity approaches a constant, negative, nonzero value, as we can see by inspection of Eq(1). Thus we 
will have a terminal velocity of -g / k. This can of course be seen immediately from the ODE for the 
y-velocity (when the derivative is zero, we have the "terminal" condition).
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which, remarkably, can be seen to be the same as the non-drag result for TOF as k becomes small. 
This is because the approximation becomes better as k is smaller. For larger k this TOF will not be 
especially accurate.
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This quadratic can be solved for T, 

y0 v0 sin θ( ) T+
1−

2
k

g

k
v0 sin θ( )+








T
2+ 0=

We can try to expand the exponential in a series of only a few terms, which will be powers of T:
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Finally, a parameter of interest is the time of flight. We get this by setting y(T) = 0 and solve for T. In this 
situation, however, we have a transcendental equation, which cannot be explicitly solved for T.

and these are the results for the no-drag case.
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and all is well. Now we can find the position of the maximum height, by using the time from Eq(2) in the 
position equations x(t) and y(t). This gives:
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Again we take limits to see if the no-drag results are recovered:
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Next we plot the trajectory for a few example cases, indicating the maxima, and checking the final x 
position (i.e., the range) calculated using x(T), compared to the observed value. For this value of T the y 
position should be close to zero.
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In the plot, the initial velocity is 10 m / s, at an initial angle of 30 degrees. The k values are 0.001 (thick 
line, essentially no drag), 0.1, 0.5, 1, and 2. Here are the calculated ranges and y positions:

d 0.1:= x T d( ) d,( ) 10.37= y T d( ) d,( ) 0.345=

d 0.5:= x T d( ) d,( ) 7.361= y T d( ) d,( ) 1.217=

d 1:= x T d( ) d,( ) 5.337= y T d( ) d,( ) 1.734=

d 2:= x T d( ) d,( ) 3.398= y T d( ) d,( ) 2.121=

We see that the approximate TOF is not very good unless the drag coefficient k is quite small. Since the 
TOF is not very useful, there's little point in using it in the x(t) to find a range.
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