Ejercicios de la unidad 14.2 Integrales dobles y volumen

13, 17, 19, 22, 28, 53, 55

ANTHONY POLANCO

En los ejercicios 13 a 20, dar una integral para cada orden de integración y utilizar el orden más conveniente para evaluar la integral en la región R.

13. $\iint_{R} xy \, dA$

R: rectángulo con vértices (0, 0), (0, 5), (3, 5), (3, 0)

14. $\iint_{R} \operatorname{sen} x \operatorname{sen} y \, dA$

R: rectángulo con vértices $(-\pi, 0)$, $(\pi, 0)$, $(\pi, \pi/2)$, $(-\pi, \pi/2)$

 $15. \int_{R} \int \frac{y}{x^2 + y^2} dA$

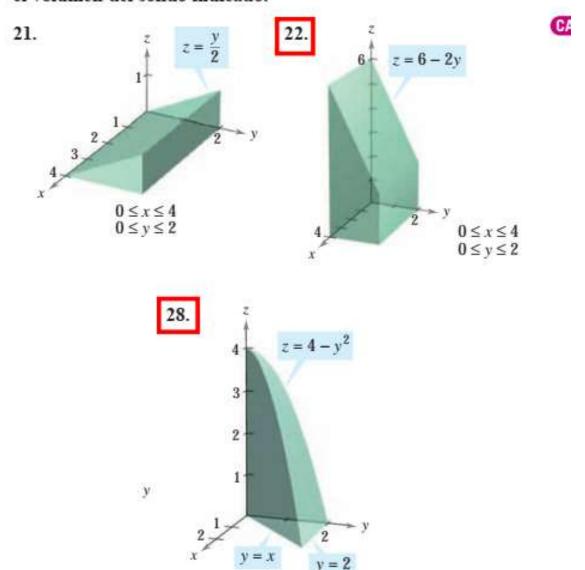
R: triángulo acotado por y = x, y = 2x, x = 1, x = 2

16. $\int_{R} \int xe^{y} dA$

R: triángulo acotado por y = 4 - x, y = 0, x = 0

17. $\int_{P} \int -2y \, dA$

R: región acotada por $y = 4 - x^2$, y = 4 - x


 $18. \int_{R} \int \frac{y}{1+x^2} dA$

R: región acotada por y = 0, $y = \sqrt{x}$, x = 4

19. $\int_{R} \int x \, dA$

R: el sector circular en el primer cuadrante acotado por $y = \sqrt{25 - x^2}$, 3x - 4y = 0, y = 0

En los ejercicios 21 a 30, utilizar una integral doble para hallar el volumen del sólido indicado.

En los ejercicios 53 a 58, trazar la región de integración. Después evaluar la integral iterada y, si es necesario, cambiar el orden de integración.

53.
$$\int_0^1 \int_{y/2}^{1/2} e^{-x^2} \, dx \, dy$$

54.
$$\int_0^{\ln 10} \int_{e^x}^{10} \frac{1}{\ln y} \, dy \, dx$$

55.
$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \sqrt{4-y^2} \, dy \, dx$$
 56.
$$\int_{0}^{3} \int_{y/3}^{1} \frac{1}{1+x^4} \, dx \, dy$$

56.
$$\int_0^3 \int_{y/3}^1 \frac{1}{1+x^4} \, dx \, dy$$

57.
$$\int_{0}^{1} \int_{0}^{\arccos y} \sin x \sqrt{1 + \sin^{2} x} \, dx \, dy$$