Con un file GeoGebra si può vedere che inserendo l'equazione y = x in \mathbb{R}^2 si ottiene una retta, mentre in \mathbb{R}^3 la medesima equazione produce un piano, che in particolare contiene la retta di \mathbb{R}^2 . In effetti in \mathbb{R}^3 i punti sulla retta sono del tipo (t, t, 0), ma anche tutti i punti del tipo (t, t, s) soddifano l'equazione y = x.

Cosa otteniamo mediante l'equazione x + y + z = 0, oppure x + y + z = 3?

Mettiamoci intanto in una situazione nota. Sappiamo che dati due punti A e B dello spazio, il luogo geometrico dei punti equidistanti da A e da B è un piano passante per il punto medio M_{AB} del segmento AB e perpendicolare al segmento AB. Sfruttiamo questa proprietà per cercare l'equazione di tale piano.

Esercizio 1. Determinare un'equazione del luogo geometrico di punti P equidistanti da A(1,2,3) e B(3,4,-1).

SOLUZIONE:

Dato il generico punto P(x, y, z) di \mathbb{R}^3 , imponiamo la condizione $\overline{PA} = \overline{PB}$ o meglio $\overline{PA}^2 = \overline{PB}^2$:

$$(x-1)^2 + (y-2)^2 + (z-3)^2 = (x-3)^2 + (y-4)^2 + (z+1)^2$$

$$x^2 - 2x + 1 + y^2 - 4y + 4 + z^2 - 6z + 9 = x^2 - 6x + 9 + y^2 - 8y + 16 + z^2 + 2x + 1$$

$$4x + 4y - 8z = 12$$

$$x + y - 2z = 3$$

Questa deve quindi essere un'equazione del piano π passante per il punto medio di AB e perpendicolare ad AB. Notiamo che $M_{AB}(2,3,1)$ e si verifica facilmente che tale punto soddisfa l'equazione trovata: $2+3-2\cdot 1=3$. Inoltre la direzione del segmento AB è descritta dal vettore $\mathbf{v}=B-A=(2,2,-4)$. Possiamo verificare l'ortogonalità tra l'equazione del piano trovata e il segmento AB in qualche modo?

Come possiamo generalizzare quanto ottenuto? Proviamo a ragionare da un altro punto di vista.

Consideriamo il vettore $\mathbf{v_r} = B - A = (2, 2, -4)$. Sappiamo che esiste un solo piano π passante per l'origine e perpendicolare alla retta r passante per A e B. Inoltre, ogni retta contenuta in π è ortogonale a r, quindi ogni vettore \mathbf{u} contenuto in π è ortogonale a $\mathbf{v_r}$.

Per trovare il piano π passante per l'origine e perpendicolare alla retta r ci basta perció cercare tutti i punti P dello spazio tali che i vettori $\mathbf{u} = P$ e $\mathbf{v_r}$ siano tra loro ortogonali. Sappiamo che due vettori $\mathbf{v_r}$ e \mathbf{u} sono ortogonali se e solo se il loro prodotto scalare è zero. Quindi, il generico vettore $\mathbf{u} = P = (x, y, z)$ di \mathbb{R}^3 è ortogonale a $\mathbf{v_r}$ se e solo se

$$\mathbf{v_r} \cdot \mathbf{u} = 2x + 2y - 4z = 0$$

È quindi evidente che il luogo geometrico dei punti P(x,y,z) dello spazio tali che 2x+2y-4z=0, cioè x+y-2z=0, è il piano π passante per l'origine e perpendicolare al vettore $\mathbf{v_r}=(2,2,-4)$. Infine il piano π passante per l'origine e perpendicolare alla retta r di direzione $\mathbf{v_r}=(2,2,-4)$ ha equazione

$$\pi: 2x + 2y - 4z = 0$$
 cioè $\pi: x + y - 2z = 0$

Se ora vogliamo cercare il piano π' perpendicolare alla retta r, ovvero parallelo al piano π appena trovato, ma passante per il punto $P_0 = M_{AB}(2,3,1)$, consideriamo il generico punto P del piano π' cercato e il vettore $\mathbf{w} = P - P_0 = (x-2,y+1,z-3)$. Tale vettore è parallelo a π' e π , quindi è un vettore ortogonale a $\mathbf{v_r} = (2,2,-4)$. Di conseguenza:

$$2(x-2) + 2(y-3) - 4(z-1) = 0$$
 \Rightarrow $2x + 2y - 4z = 6$ \Rightarrow $x + y - 2z = 3$

Quindi il piano π' passante per $P_0(2,3,1)$ e ortogonale alla retta r, cioè al vettore $\mathbf{v_r}=(2,2,-4)$, ha equazione

$$\pi'$$
: $2x + 2y - 4z = 6$ cioè π' : $x + y - 2z = 3$

Abbiamo in effetti ottenuto la stessa equazione dell'esercizio appena svolto.

Notiamo che la condizione $(P-P_0)\cdot \mathbf{v} = 0$ può essere equivalentemente scritta nella forma $P\cdot \mathbf{v} = P_0\cdot \mathbf{v}$, ottenendo più facilmente:

$$2x + 2y - 4z = 2 \cdot 2 + 2 \cdot 3 - 4 \cdot 1$$
 \Rightarrow $x + y - 2z = 3$

In generale quindi l'**equazione cartesiana di un piano** passante per un punto P_0 e perpendicolare al vettore $\mathbf{v} = \mathbf{v}_{\perp}(a, b, c)$ è data da

$$\pi: P \cdot \mathbf{v}_{\perp} = P_0 \cdot \mathbf{v}_{\perp} \quad \Rightarrow \quad \pi: ax + by + cz = d \quad \text{con } d = P_0 \cdot \mathbf{v}_{\perp}$$

Ricordiamo che due piani in \mathbb{R}^3 possono essere:

• Paralleli. In questo caso sono entrambi ortogonali allo stesso vettore $\mathbf{v}=(a,b,c)$, quindi possono essere scritti nella forma $\pi_1: ax+by+cz=d_1$ e $\pi_2: ax+by+cz=d_2$ per opportuni $d_1,d_2\in\mathbb{R}$.

• Incidenti. In questo caso la loro intersezione è una retta. Per esempio il sistema di equazioni

$$r: \begin{cases} x + 2y - z = 1\\ 3x + y + z = 5 \end{cases}$$

descrive la retta r, intersezione dei due piani π_1 : x+2y-z=1 e π_2 : 3x+y+z=5. Un tale sistema è anche detto **equazione cartesiana** della retta r.

Possiamo però anche ragionare da un punto di vista completamente diverso. Lavorando in \mathbb{R}^2 abbiamo visto che le combinazioni lineari $P = s\mathbf{u} + t\mathbf{v}$ di due vettori \mathbf{u} e \mathbf{v} con direzioni diverse descrivono tutto il piano \mathbb{R}^2 al variare di $s, t \in \mathbb{R}$.

Con un file GeoGebra (v. Esercizi 11 e 12) ci si convince facilmente che dati due vettori \mathbf{u} e \mathbf{v} di \mathbb{R}^3 con direzioni diverse, le loro combinazioni lineari $P = s\mathbf{u} + t\mathbf{v}$ descrivono, al variare di $s, t \in \mathbb{R}$, un piano di \mathbb{R}^3 passante per l'origine e contenente in particolare le rette $s\mathbf{u}$ e $t\mathbf{v}$.

Analogamente, dato un ulteriore punto o vettore P_0 , le combinazioni lineari $P = P_0 + s\mathbf{u} + t\mathbf{v}$ descrivono, al variare di $s, t \in \mathbb{R}$, un piano π di \mathbb{R}^3 passante per P_0 e parallelo al piano $s\mathbf{u} + t\mathbf{v}$. Il piano π contiene in particolare le rette $P_0 + t\mathbf{u}$ e $P_0 + s\mathbf{v}$.

Di conseguenza l'equazione parametrica di un piano di \mathbb{R}^3 è del tipo

$$\pi: P = P_o + t\mathbf{u} + s\mathbf{v} \implies (x, y, z) = (x_0 + tu_x + sv_x, \ y_0 + tu_y + sv_y, \ z_0 + u_z + sv_z) \implies$$

$$\pi: \begin{cases} x = x_0 + tu_x + sv_x t \\ y = y_0 + tu_y + sv_y \\ z = z_0 + u_z + sv_z \end{cases} \quad \forall s, t \in \mathbb{R}$$

dove P_0 è un punto di π e $\mathbf{u} = (u_x, u_y, u_z)$ e $\mathbf{v} = (v_x, v_y, v_z)$ sono due vettori paralleli a π .

Esercizio 2. Determinare un'equazione parametrica del piano π passante per i punti A(1,3,1), B(2,0,0) e C(0,1,1).

SOLUZIONE:

Determiniamo due direzioni parallele al piano π cercato:

$$\mathbf{u} = B - A = (1, -3, -1)$$
 e $\mathbf{v} = C - A = (-1, -2, 0)$

Di conseguenza π è dato per esempio dai punti $P=B+t\mathbf{u}+s\mathbf{v}$:

$$\pi: \ (x,y,z) = (2,0,0) + t(1,-3,-1) + s(-1,-2,0) \ \Rightarrow \ \pi: \begin{cases} x = 2 + t - s \\ y = -3t - 2s \\ z = -t \end{cases} \ \forall \ t, \ s \ \in \ \mathbb{R}$$