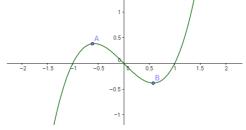
Asignatura: Matemáticas II – 2ºBachillerato Examen: *Tema 1 Matemáticas II - Modelo 15*

página 1/2

Instrucciones:

a) Duración: 1 hora


- b) Tienes que **elegir** entre realizar únicamente los cuatro ejercicios de la **Opción A** o realizar únicamente los cuatro ejercicios de la **Opción B**. Indica, en la primera hoja donde resuelves el examen, la opción elegida.
- c) La puntuación de cada pregunta está indicada en la misma.
- **d)** Contesta de forma razonada y escribe a bolígrafo (no a lápiz) ordenadamente y con letra clara. Las faltas de ortografía, la mala presentación y no explicar adecuadamente las operaciones pueden restar hasta un máximo de 1 punto de la nota final.
- **e)** Se permitirá el uso de calculadoras que no sean programables, gráficas ni con capacidad para almacenar o transmitir datos. No obstante, todos los procesos conducentes a la obtención de resultados deben estar suficientemente justificados.

Opción A

Ejercicio 1.- a) [1 punto] Calcula el número real m que cumple $\lim_{x\to 0} \frac{\ln(1+mx)}{sen(2x)} = 3$.

b) [0,5 puntos] Obtener el valor de a para que la función $f(x) = \begin{cases} x^2 + ax + a - 1 & si & x < 2 \\ \ln(x - 1) & si & x \ge 2 \end{cases}$ sea continua en x = 2.

c) [1 punto] La siguiente gráfica muestra la derivada f'(x) de una función f(x). Viendo la gráfica, ¿qué podemos decir de los intervalos de crecimiento, decrecimiento y de los extremos relativos de la función original f(x)?

Ejercicio 2.- [2,5 puntos] Sea la función $g(x) = \frac{x^3}{3} - 4x^2 - \frac{2x}{3} - 4$. Hallar los valores x de la curva en que la recta tangente es paralela a la recta 0 = 2x + 3y - 4.

Ejercicio 3.- [2,5 puntos] Considera la función $f(x)=x^3+ax^2+bx+c$. Determina a, b y c sabiendo que la recta normal a la gráfica de f(x) en el punto de abscisa x=0 es y+x+3=0 y que el punto de inflexión tiene abscisa x=1.

Ejercicio 4.- Sea la función $f:(0,+\infty)$ y definida por $f(x)=\frac{1}{x}+\ln(x)$.

- a) [1,5 puntos] Halla los extremos relativos de f(x).
- b) [1 punto] Determina la ecuación explícita de la recta tangente a la función en x=e.

Colegio Marista "La Inmaculada" de Granada – Profesor Daniel Partal García – www.danipartal.net

Asignatura: Matemáticas II – 2ºBachillerato Examen: *Tema 1 Matemáticas II - Modelo 15*

página 2/2

Opción B

Ejercicio 1.- a) [1 punto] Sea f(x) = sen(x) . Obtener la ecuación explícita de la recta tangente a la función en el punto de abscisa $x = \frac{\pi}{4}$.

b) [1,5 puntos] Sabiendo que $\lim_{x\to 1} \left(\frac{x}{x-1} - \frac{a}{\ln x}\right)$ es finito, calcula a y el valor del límite (\ln denota el logaritmo neperiano).

Ejercicio 2.- [2,5 puntos] Se desea construir un contenedor con forma de paralelepípedo rectangular de $100\,m^3$ de volumen, de manera que el largo de su base sea $\frac{4}{3}$ de la anchura x de su base. Los precios de m^2 de pintura del suelo, del techo y de la pared lateral son, respectivamente, $225\,\ell\,/m^2$, $300\,\ell\,/m^2$ y $256\,\ell\,/m^2$. Determinar razonadamente las dimensiones que minimizan el coste de pintura y dicho coste mínimo.

Ejercicio 3.- [2,5 puntos] Sea $f(x)=x^3+ax^2+bx+c$ un polinomio con extremo relativo en x=1, con punto de inflexión en x=3 y que pasa por el origen de coordenadas. Determinar a, b y c.

Ejercicio 4.- [2,5 puntos] Sea la función definida por $f(x) = \frac{2x^2}{(x+1)(x-2)}$. Estudia el dominio, los puntos de corte con los ejes, las asíntotas, los intervalos de crecimiento y decrecimiento, y los extremos relativos.