INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 2.9] LOGARITHMS

Compiled by Christos Nikolaidis

O. Practice questions

BASIC PROPERTIES OF LOGARITHMS

[Maximum mark: 12] [without GDC]
 Write down the following values

$\log_2 1 =$	$\log_2 2 =$	$\log_2 16 =$
log ₅ 1=	$\log_5 5 =$	$\log_5 25 =$
log ₃ 1 =	log ₃ 3 =	log ₃ 9 =
log ₃ 27 =	$\log_3 \frac{1}{3} =$	$\log_3 \sqrt{3} =$

2. [Maximum mark: 9] *[without GDC]* Write down the following values

log 100 =	log 10 =	log1 =
$\log \frac{1}{100} =$	$\log \frac{1}{10} =$	log 0.1 =
$\log 10^{2020} =$	$\log \sqrt{10} =$	$\log \sqrt[3]{10} =$

3. [Maximum mark: 6] **[without GDC]**Write down the following values

ln1=	ln e =	$\ln e^2 =$
$\ln \frac{1}{e} =$	$\ln\frac{1}{e^2} =$	$\ln \sqrt{e} =$

4. [Maximum mark: 6] *[without GDC]*

Write down the value of x for each of the following equations

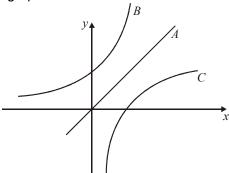
$\log_2 8 = x$	<i>x</i> =
$\log_2 x = 3$	<i>x</i> =
$\log_x 8 = 3$	x =

$\log 1000 = x$	<i>x</i> =
$\log x = 3$	<i>x</i> =
$ \ln x = 3 $	<i>x</i> =

5. [Maximum mark: 6] **[without GDC]**

Confirm the following properties for x = 1000 and y = 100

$\log xy = \log x + \log y$	LHS =
	RHS =
$\log \frac{x}{y} = \log x - \log y$	LHS =
	RHS =
$\log x^2 = 2\log x$	LHS =
	RHS =


6. [Maximum mark: 8] *[without GDC]*

Find the following integers

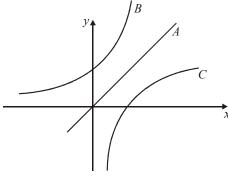
$\log_3 3^5 =$	$\log 10^5 =$
$3^{\log_3 5} =$	$10^{\log 5}$
$3^{2\log_3 5} =$	$10^{2\log 5}$
$3^{3\log_3 5} =$	$10^{3\log 5} =$
$\ln e^5 =$	$\log_a a^5 =$
$e^{\ln 5} =$	$a^{\log_a 5} =$
$e^{2\ln 5} =$	$a^{2\log_a 5} =$
$e^{3\ln 5} =$	$a^{3\log_a 5} =$

7. [Maximum mark: 4] [without GDC]

The diagram shows three graphs.

A is part of the graph of y = x, B of the graph of $y = 2^x$,

 ${\cal C}$ is the reflection of graph ${\it B}$ in line ${\it A}$. Write down:


- (a) the equation of C in the form y = f(x).
- (b) the coordinates of the point where C cuts the x-axis. [2]

[2]

 	•••••	•••••

8. [Maximum mark: 4] [without GDC]

The diagram shows three graphs.

A is part of the graph of y = x, B of the graph of $y = e^x$,

 ${\cal C}$ is the reflection of graph ${\it B}$ in line ${\it A}$. Write down:

- (a) the equation of C in the form y = f(x). [2]
- (b) the coordinates of the point where C cuts the x-axis. [2]

9. [Maximum mark: 28] [without GDC]

Let $\log x = a$, $\log y = b$ and $\log z = c$. Express the following in terms of a,b,c.

$\log xy$	
$\log \frac{x}{y}$	
$\log x^3$	
$\log xyz$	
$\log x^2 y$	
$\log \sqrt{x}$	
$\log \frac{xy}{z}$	
$\log(10x)$	
$\log(100x)$	
$\log \frac{y}{10}$	
$\log \frac{y}{100}$	
$\log \frac{xy}{10z}$	
$\log \frac{1}{z}$	
$\log \frac{x^2 y^7}{\sqrt{z}}$	

10. [Maximum mark: 28]

Let $\ln x = a$, $\ln y = b$ and $\ln z = c$. Express the following in terms of a,b,c.

ln xy	
$\ln \frac{x}{y}$	
$\ln x^3$	
ln xyz	
$\ln x^2 y$	
$\ln \sqrt{x}$	
$\ln \frac{xy}{z}$	
ln(ex)	
$\ln(e^2x)$	
$ln \frac{y}{e}$	
$\ln \frac{y}{e^2}$	
$\ln \frac{xy}{ez}$	
$\ln \frac{1}{z}$	
$ \ln \frac{x^2 y^7}{\sqrt{z}} $	

11. [Maximum mark: 26] [without GDC]

Let $\log_5 x = a$, $\log_5 y = b$ and $\log_5 z = c$. Express the following in terms of a,b,c.

$\log_5 xy$	
$\log_5 \frac{x}{y}$	
$\log_5 x^3$	
$\log_5 \sqrt{x}$	
$\log_5 \frac{xy}{z}$	
$\log_5 \frac{xy}{5z}$	
$\log_5 \frac{1}{z}$	
$\log_5 \frac{x^2 y^7}{\sqrt{z}}$	
$\log_{25} x$	
$\log_x 5$	
$\log_x y$	
$\log_z xy$	
$\log_{25} xy$	

LOGARITHMIC EQUATIONS

12. [Maximum mark: 6] **[without GDC]**

Solve the following equations

$\log_3(x+1) = 2$	
$\log(x+1) = 2$	
$\ln(x+1) = 2$	

13. [Maximum mark: 12] *[without GDC]*

Solve the equations

$\log_7(x+5) = 0$	
$\log_7(x+5) = 1$	
$\log(x+5) = 0$	
$\log(x+5) = 1$	
$\ln(x+5) = 0$	
$\ln(x+5) = 1$	

14. [Maximum mark: 12] *[without GDC]*

Solve the equations

$\log(2x) = 2$	
$\ln(2x) = 2$	
$\log(2x+4) = 1$	
$\ln(2x+4) = 1$	
$\log(2x-5)=0$	
$\ln(2x-5) = 0$	

15.	[Maxi	imum mark: 9]	
	Solve	e the equations	
	(a)	$\log_2 x + \log_2 (x+1) = \log_2 6$	[3]
	(b)	$\log_2 x + \log_2 (x+1) = 1$	[3]
	(c)	$\log_2(x+5) - \log_2 x = 1$	[3]

16.	[Max	mum mark: 12] <i>[without GDC]</i>	
	Solve	the equations	
	(a)	$\log x + \log(x+1) = \log 6$	[4]
	(b)	$\log x + \log(x+3) = 1$	[4]
	(c)	$\log(x+18) - \log x = 1$	[4]

_	mum mark: 10] <i>[without GD</i> 6 the equations	CJ	
(a)	$\log_2(x+14) - 2\log_2 x = 2$		[4]
(b)	$\log_4(x+14) - \log_2 x = 1$	by using change of base on $\log_4(x+14)$	[3]
(c)	$\log_2(x+14) = 2 + \log_{\sqrt{2}} x$	by using change of base on $\log_{\sqrt{2}} x$	[3]

18*.	[Maxi	mum mark: 8] [witho	out GDC]	
	Solve	the following equations		
		$\left(\ln x\right)^2 - \ln x^2 + 1 = 0$	by letting $y = \ln x$	[3]
	(b)	$\ln x + \frac{1}{\ln x} = 2$	by using an appropriate substitution.	[2]
	(c)	$\log x + \frac{1}{\log x} = 2$	by using an appropriate substitution.	[3]

A. Exam style questions (SHORT)

PROPERTIES OF LOGARITHMS

[Max	ximum mark: 5] <i>[without GDC]</i>	
(a)	Find $\log_2 32$.	
(b)	Given that $\log_2\left(\frac{32^x}{8^y}\right)$ can be written as $px+qy$, find the value of p and of q .	
[Max	ximum mark: 51	
	ximum mark: 5] <i>[without GDC]</i> $\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	i
	ximum mark: 5] [without GDC] $\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x , y and	ł
		1
	$\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	1
	$\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	i
	$\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	j
	$\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	1
	$\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	1
	$\log_{10} P = x$, $\log_{10} Q = y$ and $\log_{10} R = z$. Express $\log_{10} \left(\frac{P}{QR^3}\right)^2$ in terms of x, y and	ı

	[Maximum mark: 5]		
	Let $a = \log x$, $b = \log x$	v , and $c = \log z$. Write $\log \left(\frac{x^2 \sqrt{y}}{z^3} \right)$ in terms of a, b and c .	
			••••
22.	[Maximum mark: 5]	[without GDC]	
	Let $p = \log_{10} x$, $q = \log_{10} x$	$g_{10} y$ and $r = \log_{10} z$. Write $\log_{10} \left(\frac{x}{y^2 \sqrt{z}} \right)$ in terms of p, q and	r.

	Let 1	$\ln a = p$, $\ln b = q$. Write the following expressions in terms of p and q .	
	(a)	$\ln a^3b$	[3]
	(b)	$\ln\!\left(\frac{\sqrt{a}}{b}\right)$	[3]
24.		kimum mark: 6] [without GDC] en that $p = \log_a 5$, $q = \log_a 2$, express the following in terms of p and/or q .	
	(a)	$\log_a 10$	[2]
			[~]
	(b)	$\log_a 8$	[2]
		$\log_a 8$	[2]
		$\log_a 8$	[2]
		$\log_a 8$	[2]
		$\log_a 8$ $\log_a 2.5$	[2]
		$\log_a 8$ $\log_a 2.5$	[2]
		$\log_a 8$ $\log_a 2.5$	[2]
		$\log_a 8$ $\log_a 2.5$	[2]
		log _a 8 log _a 2.5	[2]
		log _a 8 log _a 2.5	[2]
		log _a 8 log _a 2.5	[2]

25 .	[Max	imum mark: 6]	[without GI	DC]		
	(a)	Let $\log_c 3 = p$ and	$nd \log_c 5 = q$. Find an expre	ssion in terms of	p and q for
		(i) $\log_c 15$;	(ii) \log_c	25.		[4]
	(b)	Find the value of	f d if $\log_d 6 =$	$=\frac{1}{2}$.		[2]
26.	[Max	imum mark: 6]	[without Gi	DC]		
	Give	n that $\log_5 x = y$,	express each	of the following	g in terms of y .	
	(a)	$\log_5 x^2$	(b) $\log_5\left(\frac{1}{2}\right)$	$\left(\frac{1}{x}\right)$ (c)	$\log_{25} x$	[2+2+2]

[Max	kimum mark: 4]
If lo	$g_a 2 = x$ and $\log_a 5 = y$, find in terms of x and y, expressions for
(a)	$\log_2 5$.
(b)	$\log_a 20$.
Find	timum mark: 6] <i>[without GDC]</i> the exact value of x in each of the following equations. $5^{x+1} = 625$
	$\log_a(3x+5) = 2$

LOGARITHMIC EQUATIONS

	Solv	$\log_2 x + \log_2(x-2) = 3$, for $x > 2$	
30.	[Max	kimum mark: 6] <i>[without GDC]</i>	
	(a)	Given that $\log_3 x - \log_3 (x - 5) = \log_3 A$, express A in terms of x .	[2
	(a) (b)	Given that $\log_3 x - \log_3 (x - 5) = \log_3 A$, express A in terms of x . Hence or otherwise, solve the equation $\log_3 x - \log_3 (x - 5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x - 5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	[2
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x - 5) = 1$.	
		Hence or otherwise, solve the equation $\log_3 x - \log_3(x-5) = 1$.	

31.	[Maximum mark: 6]	[without GDC]
	Solve the equation	$\log_3(x+2) = 1 + \frac{\log_3 x}{2}$
32.	[Maximum mark: 4]	Swithout GDC1
· - .		$\log_9 81 + \log_9 \frac{1}{9} + \log_9 3 = \log_9 x.$
	·	

J1 V C	the equation $log(10x+20)-2log x=1$
	mum mark: [5] [without GDC] the equation $\log_{10}(4x) + 2\log_{10}x = 5$
	mum mark: [5] [without GDC] the equation $\log_2(4x) + 2\log_2 x = 5$
lve	
lve	the equation $\log_2(4x) + 2\log_2 x = 5$
lve	the equation $\log_2(4x) + 2\log_2 x = 5$
lve	the equation $\log_2(4x) + 2\log_2 x = 5$
lve	the equation $\log_2(4x) + 2\log_2 x = 5$
lve	the equation $\log_2(4x) + 2\log_2 x = 5$
lve	the equation $\log_2(4x) + 2\log_2 x = 5$
vive	the equation $\log_2(4x) + 2\log_2 x = 5$
olve	the equation $\log_2(4x) + 2\log_2 x = 5$
ive	the equation $\log_2(4x) + 2\log_2 x = 5$

35.	[Maximum mark: 6]	[without GDC]	
	Solve, for x , the equa	tion $\log_2(5x^2 - x - 2) = 2 + 2\log_2 x$.	
			••••
			••••
			••••
			•••
			••••
			•••
			•••
			••••
			•••
			•••
			•••
			•••
			•••
36.	[Maximum mark: 6]	[without GDC]	
	Solve the equation lo	$\xi_{16} \sqrt[3]{100 - x^2} = \frac{1}{2} .$	

37.	[Maximum mark: 5] [with GDC]
	Solve the equation $\log_{27} x = 1 - \log_{27} (x - 0.4)$.
38*.	
	Solve the equation $2\log_3(x-3) + \log_{\frac{1}{3}}(x+1) = 2$

39*.	[Maximum mark: 6] [without GDC]
	Solve the equation $\log_2 x = \log_4 (x+6)$
40*.	[Maximum mark: 6] [without GDC]
	Solve, $ \ln(x+3) = 1$. Give your answers in exact form.

41.	[Maxir	mum mark: 6]	[without GDC]
	Solve	$2(\ln x)^2 = 3\ln x -$	-1 for x . Give your answers in exact form.
		• • • • • • • • • • • • • • • • • • • •	
42**.	. [Maxir	mum mark: 6]	[without GDC]
	Solve	the equation 91d	$\log_x 5 = \log_5 x$

43**.	. [Maximum mark: 6]	
	Solve the equation 91	$\log_5 x = 25 \log_x 5$. Express your answers in the form $5^{\frac{p}{q}}$, $p, q \in Z$.
44**.	. [Maximum mark: 7]	
	Solve the equation 91	$\log_8 x = 6 + 8\log_x 8$

45**.	[Maximum mark: 7]	[without GDC]			
	Solve the simultaneous	s equations: $2^{x^2} =$	4 ^y and lo	$g_x y = \frac{3}{2}$	
4C**	[Maximum mark: 7]	Swithout CDCI			
46**.	[Maximum mark: 7] Solve the simultaneous		4^{2x+3} and 1	$og_2 y = log_2 x + 4$	
46**.			4 ^{2x+3} and 1	$og_2 y = log_2 x + 4$	
46**.			4 ^{2x+3} and 1	$og_2 y = log_2 x + 4$	
46**.			4 ^{2x+3} and 1	$\log_2 y = \log_2 x + 4$	
46**.	Solve the simultaneous				
46**.	Solve the simultaneous	s equations: $8^y =$			
46**.	Solve the simultaneous	s equations: $8^y =$			
46**.	Solve the simultaneous	s equations: $8^y =$			

7**.	[Maximum mark: 7]	[without G	DC]		
	Solve the simultaneous	us equations	$\log_2(y-1) = 1 + \log_2(y-1)$	$g_2 x$ and $2 \log_3 y =$	$2 + \log_3 x$
					••••••

8**.	[Maximum mark: 7]	[without GDC	1		
	Solve the simultaneous	equations	$\log_2 x - \log_4 y = 4,$	$\log_2(x-2y) = 5$	
					•••••
		•••••			•••••

LOGARITHMS AND SEQUENCES

1	-	ımum mark: 8] ulate the following	-	i)	
	(a)	$\ln 2 + \ln 2^2 + \ln 2^3$	$^{3} + \cdots + \ln 2^{10}$		[3]
	(b)	$\ln 2 + (\ln 2)^2 + (\ln 2)^2$	$(\ln 2)^3 + \dots + (\ln 2)$)10	[3]
	(c)	$\ln 2 + (\ln 2)^2 + (\ln 2)^2$			[2]

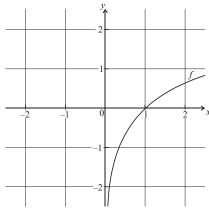
			[without GDC]
	Find	$\sum_{r=1}^{50} \ln(2^r)$, giving the	he answer in the form $a \ln 2$, where $a \in \mathbb{Q}$.
	[May		
1*.	_	_	[without GDC]
1*.	_	_	the sum of the first 35 terms of the series
1*.	_	_	the sum of the first 35 terms of the series
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$
1*.	Find	an expression for	the sum of the first 35 terms of the series
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	an expression for	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.
1*.	Find	g your answer in t	the sum of the first 35 terms of the series $\ln x^2 + \ln \frac{x^2}{y} + \ln \frac{x^2}{y^2} + \ln \frac{x^2}{y^3} + \cdots$ the form $\ln \frac{x^m}{y^n}$, where $m, n \in \mathbb{N}$.

LOGARITHMS AND FUNCTIONS

52. [Maximum mark: 6] **[without GDC]**

The function f is defined for x > 2 by $f(x) = \ln x + \ln(x-2) - \ln(x^2-4)$.

- (a) Express f(x) in the form $\ln\left(\frac{x}{x+a}\right)$. [2]
- (b) Find an expression for $f^{-1}(x)$. [4]


53. [Maximum mark: 6] *[without GDC]*

Let $f(x) = \log_a x, x > 0$.

- (a) Write down the value of (i) f(a)
- (ii) f(1)
- (iii) $f(a^4)$
- [3]

(b) The diagram below shows part of the graph of f.

On the same diagram, sketch the graph of f^{-1} .

[3]

54.	[Max	rimum mark: 7]	
	Let	$f(x) = k \log_2 x.$	
		Given that $f^{-1}(1) = 8$, find the value of k .	[3]
	(b)	Find $f^{-1}\left(\frac{2}{3}\right)$.	[4]
55*.	[Max	kimum mark: 7] <i>[without GDC]</i>	
	Let	(1) 21 and (1) 1.5.3	
		$f(x) = 3 \ln x$ and $g(x) = \ln 5x^3$.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$.	[4]
			[4]
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$.	[4] [3]
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	
	(a)	Express $g(x)$ in the form $f(x) + \ln a$, where $a \in \mathbb{Z}^+$. The graph of g is a transformation of the graph of f . Give a full geometric description of this transformation.	

56 .	[Max	ximum mark: 7]	
	Let	$f(x) = \log_3 \sqrt{x}$, for $x > 0$.	
	(a)	Show that $f^{-1}(x) = 3^{2x}$.	[2]
	(b)	Write down the range of f^{-1} .	[1]
	Let	$g(x) = \log_3 x$, for $x > 0$.	
	(c)	Find the value of $(f^{-1}\circ g)(2)$, giving your answer as an integer.	[4]
57.	_	ximum mark: 6] [with GDC] $f(x) = \ln(x + 2) \text{if } x = 2 \text{ and } x(x) = 2^{(x-4)} \text{if } x = 0$	
	(a)	$f(x) = \ln(x+2), \ x > -2 \ \text{and} \ g(x) = e^{(x-4)}, \ x > 0$. Write down the x -intercept of the graph of f .	[1]
	(a) (b)	(i) Write down $f(-1.999)$.	ניו
	(5)	(ii) Write down $g(4)$	[3]
	(c)	Find the coordinates of the point of intersection of the graphs of f and g .	[2]

B. Exam style questions (LONG)

58.	[Maximum mark: 11] [without GDC]
	The functions $f(x)$ and $g(x)$ are defined by $f(x) = e^x$ and $g(x) = \ln(1+2x)$
	(a) Write down $f^{-1}(x)$.

(a)	Write down $f^{-1}(x)$.	[1]
(b)	Find $g^{-1}(x)$.	[3]

(c)	Find	(i)	$(g \circ f)(x)$	(ii)	$(f\circ g)(x)$	[4]
-----	------	-----	------------------	------	-----------------	-----

(d)	Find	$(f\circ g)^{-1}(x)$]
(d)	Find	$(f \circ g) (x)$	

59*.	[Max	imum mark: 16] <i>[without GDC]</i>	
	Let j	$f(x) = \log_3 \frac{x}{2} + \log_3 16 - \log_3 4$, for $x > 0$.	
	(a)	Show that $f(x) = \log_3 2x$.	[2]
	(b)	Find the value of $f(0.5)$ and of $f(4.5)$.	[3]
	The	function f can also be written in the form $f(x) = \frac{\ln ax}{\ln b}$.	
	(c)	(i) Write down the value of a and of b .	
		(ii) Hence on graph paper, sketch the graph of f , for $-5 \le x \le 5$, $-5 \le y \le 5$,	
		using a scale of 1 cm to 1 unit on each axis.	
		(iii) Write down the equation of the asymptote.	[6]
	(d)	Write down the value of $f^{-1}(0)$	[1]
	The	point A lies on the graph of f . At A, $x = 4.5$.	
	(e)	On your diagram, sketch the graph of f^{-1} , noting clearly the image of point A.	[4]

60**.	[Maximum mark: 20]					
	The first 4 terms of a geometric sequence $\{u_n\}$ are 5, 15, 45, a					
	(a)	Find the value of a	[1]			
	Cons	sider the new sequence $\{v_n\}$: ln 5, ln 15, ln 45, ln a				
	(b)	Write down the values of the terns v_1 , v_2 , v_3 , v_4 correct to 3 s.f.	[3]			
	(c)	Find the differences v_2-v_1 , v_3-v_2 , v_4-v_3 using the values found in (b). What do you deduce?	[3]			
	(d)	Repeat the process (b) to (c) for the new sequence $\{w_n\}$ by using \log , the logarithm to the base 10, instead of \ln . Do you obtain a similar result?	[4]			
	Cons	sider now a geometric sequence $\{u_n\}$ with first term a and common ratio 3.				
	(e)	Write down the first three terms of the sequence in terms of a .	[2]			
	Defin	te a new sequence $\{v_n\}$ as above (by using \ln).				
	(f)	Show, by using its first three terms that $\{v_n\}$ is an arithmetic sequence. State the common difference.	[4]			
	The (general term of a geometric sequence is given by $u_n = u_1 r^{n-1}$				
	The (g)	general term of a geometric sequence is given by $u_n = u_1 r^{n-1}$ State a proposition which can be derived by the process above and use the n^{th} term and the $(n+1)^{\text{th}}$ term to support your statement.	[3]			
		State a proposition which can be derived by the process above and use the	[3]			
		State a proposition which can be derived by the process above and use the	[3]			
		State a proposition which can be derived by the process above and use the	[3]			
		State a proposition which can be derived by the process above and use the	[3]			
		State a proposition which can be derived by the process above and use the n^{th} term and the $(n+1)^{\text{th}}$ term to support your statement.	[3]			
		State a proposition which can be derived by the process above and use the n^{th} term and the $(n+1)^{\text{th}}$ term to support your statement.	[3]			
		State a proposition which can be derived by the process above and use the n^{th} term and the $(n+1)^{\text{th}}$ term to support your statement.	[3]			
		State a proposition which can be derived by the process above and use the n^{th} term and the $(n+1)^{\text{th}}$ term to support your statement.	[3]			
		State a proposition which can be derived by the process above and use the n^{th} term and the $(n+1)^{\text{th}}$ term to support your statement.	[3]			

61.	[Maxi	imum mark: 13] <i>[without GDC]</i>	
	Solve	e the following equations.	
	(a)	$\log_x 49 = 2.$	[3]
		$\log_2 8 = x$	[2]
	(c)	$\log_{25} x = -\frac{1}{2}$	[3]
	(d)	$\log_2 x + \log_2(x - 7) = 3$	[5]