SRIHARI MATHEMATICS ACADEMY (TUITION CENTER), 2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K), COIMBATORE(D.T) – 641402

MOBILE NO: 9944196663 E-mail: rangarajankg@gmail.com

STATISTICS AND PROBABILITY

1. Data

The numerical representation of facts is called data

2. Observation:

Each entry in the data is called observation.

3. Variable :

The quantities which are being considered in a survey are called variables.

It is denoted by x_i , $i = 1,2,3, \dots n$

4. Frequencies:

The number of times, a variable occurs in a given data is called the frequency of that variable.

It is denoted by f_i , $i = 1,2,3, \dots n$

5. Mean (ungrouped data)
$$\overline{X} = rac{\sum_{i=1}^{n} x_i}{n}$$

6. Mean (grouped data)

a) Direct Method
$$\bar{X} = \frac{\sum_{i=1}^{n} x_i f_i}{\sum_{i=1}^{n} f_i}$$

b) Assumed Mean Method $\overline{X} = A + \frac{\sum_{i=1}^{n} f_{i}d_{i}}{\sum_{i=1}^{n} f_{i}}; \quad d_{i} = x_{i} - A$

c) Step Deviation Method
$$\bar{X} = A + c \times \frac{\sum_{i=1}^{n} f_i d_i}{\sum_{i=1}^{n} f_i}; \quad d_i = \frac{x_i - A}{c}$$

7. Dispersion:

Dispersion is a measure which gives an idea about the scatteredness of the values.

- 8. Different Measures of Dispersion:
 - a) Range
 - b) Mean deviation
 - a) Quartile deviation
- 9. Range R = L S

SRIHARI MATHEMATICS ACADEMY
(TUITION CENTER),
2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K),
COIMBATORE(D.T) – 641402
MOBILE NO: 9944196663 E-mail: rangarajankg@gmail.com
10.Coefficient of range =
$$\frac{L-S}{L+S}$$

11.If the frequency initial class is zero, then the next class will be considered for
the calculation of range.
12.Variance $\sigma^2 = \frac{\sum_{l=1}^{n} (x_l - \bar{x})^2}{n}$
13.Standard Deviation for ungrouped data
a) Direct method $\sigma = \sqrt{\frac{\sum(x_l)^2}{n} - (\frac{\sum x_l}{n})^2}$
b) Mean Method $\sigma = \sqrt{\frac{\sum(d_l)^2}{n}}$; $d_l = x_l - \bar{x}$
c) Assumed Mean Method $\sigma = \sqrt{\frac{\sum(d_l)^2}{n} - (\frac{\sum d_l}{n})^2}$
d) Step Deviation Method $\sigma = c \times \sqrt{\frac{\sum(d_l)^2}{n} - (\frac{\sum d_l}{n})^2}$
14. Mean of the first *n* natural natural numbers $\bar{x} = \frac{n+1}{2}$
15.Variance $\sigma^2 = \frac{n^2 - 1}{12}$
16.Standard Deviation for grouped data
a) Mean Method $\sigma = \sqrt{\frac{\sum f_l(d_l)^2}{N}}$; $N = \sum f_l$
b) Assumed Mean Method $\sigma = \sqrt{\frac{\sum f_l(d_l)^2}{N}} - (\frac{\sum f_l d_l}{N})^2}$
c) Shortcut Method (or) Step Deviation Method
 $\sigma = c \times \sqrt{\frac{\sum f_l(d_l)^2}{N}} - (\frac{\sum f_l d_l}{N})^2}$

17.CoOefficient of variation $C.V. = \frac{\sigma}{\bar{x}} \times 100\%$

SRIHARI MATHEMATICS ACADEMY (TUITION CENTER), 2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K), COIMBATORE(D.T) – 641402

MOBILE NO: 9944196663E-mail: rangarajankg@gmail.com

18.Random Experiment

A random experiment is an experiment in which (i) The set of all possible outcomes are known (ii) Exact outcome is not known

Example : 1. Tossing a coin

2. Rolling a die

3. Selecting a card from a pack of 52 cards

19.Sample Space:

The set of all possible outcomes in a random experiment is called a sample space. It is denoted by S

20.Sample point:

Each element of a sample space is called sample point.

21.Tree diagram:

Tree diagram allow us to see visually all possible outcomes of a random experiment. Each branch in a tree diagram represent a possible outcome.

22.Event :

In a random experiment each possible outcome is called an event.

23.Trial :

Performing an experiment once is called a trail.

24. Equally likely events :

Two are more events are said to be equally likely if each one of them has an equal chance of occurring.

25.Certain event :

In an experiment, the event which surely occur is called certain event.

26.Impossible event :

In an experiment if an event has no scope to occur then it is called an impossible event.

27. Mutually exclusive events:

SRIHARI MATHEMATICS ACADEMY (TUITION CENTER), 2/276-G, K.G.NAGAR, KALANGAL(P.O), (VIA) SULUR (T.K), COIMBATORE(D.T) – 641402

MOBILE NO: 9944196663E-mail: rangarajankg@gmail.com

Two or more events are said to be mutually exclusive if they don't have common sample points.

i.e., events A, B are said to be mutually exclusive if $A \cap B = \emptyset$

28. Exhaustive events:

The collection of events whose union is the whole sample space are called exhaustive events.

29. Complementary events:

The complement of an event A is the event representing collection of sample points not in A.

It is denoted by $A'(or)A^c(or)\overline{A}$

The event A and its complement A' are mutually exclusive and exhaustive.

 $30.P(E) = \frac{n(E)}{n(S)}$

31. The probability of sure event is 1

32. The probability of impossible event is 0

33. The probability value always lies from 0 to 1 i.e. $0 \le P(E) \le 1$

$$34.P(E) + P(\overline{E}) = 1$$

$$35.P(\overline{E}) = 1 - P(E)$$

36. Ina card

Spade 13	Clavor 13	Heart 13	Diamond 13
----------	-----------	----------	------------

Joker 4 King 4 Queen 4

 $37.A \cap A' = \emptyset A \cup A' = S$

38. If A, B are mutually exclusive events, then $P(A \cup B) = P(A) + P(B)$

 $39.P(A \cap \overline{B}) = P(only A) = P(A) - P(A \cap B)$

 $40.P(\overline{A} \cap B) = P(only B) = P(B) - P(A \cap B)$

41. If A and B are any two event $P(A \cup B) = P(A) + P(B) - P(A \cap B)$

42. If A, B and C are any three events

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C)$ $+P(A \cap B \cap C)$