INTERNATIONAL BACCALAUREATE

Mathematics: applications and interpretation

MAI

EXERCISES [MAI 1.16] **EIGENVALUES - EIGENVECTORS**

Compiled by Christos Nikolaidis

Paper 1 questions (SHORT) Α.

[Maximum mark: 8] 1.

Let $\boldsymbol{A} = \begin{pmatrix} 3 & -2 \\ -3 & 4 \end{pmatrix}$ and $\boldsymbol{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

(a)	Find the characteristic polynomial $det(A - \lambda I)$ in the form $a\lambda^2 + b\lambda + c$	[2]
(b)	Hence find the eigenvalues of matrix <i>A</i> .	[2]
(c)	Find the corresponding eigenvectors.	[4]

2.	[Max	imum mark: 7]	
	Let	$\boldsymbol{A} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$	
	(a)	Find the eigenvalues of matrix <i>A</i> .	[3]
	(b)	Find the corresponding eigenvectors.	[4]
3.		timum mark: 7]	
3.		timum mark: 7] $A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$	
3.	Let		[3]
3.	Let	$\boldsymbol{A} = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$	[3] [4]
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> .	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	
3.	Let . (a)	$A = \begin{pmatrix} 2 & 0 \\ 1 & 4 \end{pmatrix}$ Find the eigenvalues of matrix <i>A</i> . Find the corresponding eigenvectors.	

4.	[Ma	ximum mark: 9]	
	Let	$\boldsymbol{M} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	
	(a)	Find the eigenvalues of matrix <i>M</i> .	[3]
	(b)	Find the corresponding eigenvectors.	[3]
	The	matrix <i>M</i> can be expressed in the form $M = PDP^{-1}$, where <i>D</i> is a diagonal matrix.	
	(c)	Write down the matrices D and P	[2]
	(d)	Write down an expression for D in terms of P and M .	[1]

[Ma:	ximum mark: 9]
Let	$\boldsymbol{A} = \begin{pmatrix} 2 & 1 \\ -3 & 2 \end{pmatrix} \text{ and } \boldsymbol{B} = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$
(a)	Show that A has no real eigenvalues.
(b)	Find the eigenvalues of $oldsymbol{B}$ in the form $a\pm\sqrt{b}$, where $a,b\in Z$.
(c)	Find the corresponding eigenvectors of B .

B. Paper 2 questions (LONG)

[Maximum mark: 14]

6.

a)	Given that $M^2 - 6M + kI = O$, find k.
)	Find the characteristic polynomial $\det(A - \lambda I)$.
c)	Comment on the results (a) and (b).
d)	Write down the eigenvalues of <i>M</i> .
e)	Find the corresponding eigenvalues.

7. [Maximum mark: 18]

For three square matrices A, P and D it is given that $A = PDP^{-1}$

(a) Show that
$$A^2 = PD^2P^{-1}$$
 [2]

Let
$$A = \begin{pmatrix} 3 & 2 \\ a & 6 \end{pmatrix}$$

(b) Given that $\lambda = 4$ is an eigenvalue of A show that $a = -1$.	[4]
---	-----

[2]

[4]

- (c) Find the second eigenvalue of matrix *A*.
- (d) Find the corresponding eigenvectors.
- (e) Find a diagonal matrix D and an invertible matrix P, such that $A = PDP^{-1}$ [2]

(f) Hence show that
$$A^{n} = \begin{pmatrix} 2 \times 4^{n} - 5^{n} & 2 \times 5^{n} - 2 \times 4^{n} \\ 4^{n} - 5^{n} & 2 \times 5^{n} - 4^{n} \end{pmatrix}$$
 [4]

8. [Maximum mark: 14]

Let	$\boldsymbol{M} = \begin{pmatrix} 0.8 & 0.1 \\ 0.2 & 0.9 \end{pmatrix}$	
(a)	Find the eigenvalues and the corresponding eigenvectors of matrix M .	[6]
(b)	Hence show that $M^n = \frac{1}{3} \begin{pmatrix} 1+2 \times 0.7^n & 1-0.7^n \\ 2-2 \times 0.7^n & 2+0.7^n \end{pmatrix}$	[6]
(c)	Deduce the result of M^n as n tends to infinity.	[2]