2. R is the radius of the semicircle, $C X=r$, and $O C=a$.

Since r is the radius of the little circle, we can construct a right triangle with sides r, ($a+r$), and R $-r$ (from the center of the circle to the semicircle is r and the dotted line from O to the outside of the semicircle is R.). We can then use the Pythagorean Theorem and we would have

$$
r^{2}+(a+r)^{2}=(R-r)^{2}
$$

After foiling: $r^{2}+a^{2}+2 a r+r^{2}=R^{2}-2 R r+r^{2}$
After subtracting a^{2} from both sides, and adding $2 \operatorname{Rr}$ and r^{2} to both sides:
$r^{2}+2 a r+r^{2}+2 R r-r^{2}=R^{2}-a^{2}$
After combining like terms and factoring: $r^{2}+2 r(R+a)=R^{2}-a^{2}$
Looking at the right side of our equation $\left(R^{2}-a^{2}\right)$, and knowing POC is a right triangle from the construction, we know that $R^{2}-a^{2}=C P^{2}$. Side OP is equal to R because it is the radius of the semicircle.

Let's start with $(R+a+r)^{2}$ with is equal to $(R+a)^{2}+C P^{2}$ and based on the triangle ACP We get that by the Pythagorean theorem $(R+a)^{2}+C P^{2}=A P^{2}$.

By taking the square root of both sides, $A P=R+a+r$ which is also equal to $A X$. Thus, $A P=A X$.

