SRIVASTAVA CLASSES

Physics

Numerical basedon Electrical Force and Potential

1. If the Charge of a particle is 1.2×10^{-5} coulomb and is at a distance of 0.2 meter from a positve charge of 2.4×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
2. If Four charges $Q_{1}=3.6 \times 10^{-5}$ Coulomb, $Q_{2}=-2 \times 10^{-5}$ Coulomb, $Q_{3}=9.6 \times 10^{-5}$ Coulomb $Q_{4}=-0.000112$ Coulomb are placed at three points. As A $(3,6), B(1,9), C(-1,9)$ and $D(-2,20)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
3. If the Charge of a particle is 3.6×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 7.2×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
4. If the Charge of a particle is 4.8×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 9.600001×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
5. If three charges $Q_{1}=8.5 \times 10^{-5}$ Coulomb, $Q_{2}=-4.5 \times 10^{-5}$ Coulomb and $Q_{3}=5.5 \times 10^{-5}$ Coulomb are placed at three points. As $A(6,4), B(4,2)$ and $C(7,2)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
6. If three charges $Q_{1}=6.6 \times 10^{-5}$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb and $Q_{3}=4.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,3), B(2,14)$ and $C(12,12)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
7. If Four charges $Q_{1}=-3.8 \times 10^{-5}$ Coulomb, $Q_{2}=1.8 \times 10^{-5}$ Coulomb, $Q_{3}=-5.8 \times 10^{-5}$ Coulomb $Q_{4}=$ 3.6×10^{-5} Coulomb are placed at three points. As A $(6,4), B(7,4), C(6,7)$ and $D(6,26)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
8. If three charges $Q_{1}=1.9 \times 10^{-5}$ Coulomb, $Q_{2}=-5 \times 10^{-6}$ Coulomb and $Q_{3}=2.9 \times 10^{-5}$ Coulomb are placed at three points. As A $(1,1), B(13,2)$ and $C(1,4)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
9. If Four charges $Q_{1}=5 \times 10^{-5}$ Coulomb, $Q_{2}=-2.5 \times 10^{-5}$ Coulomb, $Q_{3}=7.5 \times 10^{-5}$ Coulomb $Q_{4}=-0.000105$ Coulomb are placed at three points. As A $(8,9)$, B $(10,6), C(18,-2)$ and $D(8,27)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
10. If the Charge of a particle is 6×10^{-6} coulomb and is at a distance of 1.2 meter from a positve charge of 7.2×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
11. If the Charge of a particle is 1.5×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 3×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
12. If the Charge of a particle is 3×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 1.8×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also
find total electrical potential at neutral point.
13. If three charges $Q_{1}=0.000128$ Coulomb, $Q_{2}=-5.6 \times 10^{-5}$ Coulomb and $Q_{3}=0.000216$ Coulomb are placed at three points. As A $(7,7), B(14,6)$ and C $(17,19)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
14. If three charges $Q_{1}=4 \times 10^{-5}$ Coulomb, $Q_{2}=-4.5 \times 10^{-5}$ Coulomb and $Q_{3}=1.5 \times 10^{-5}$ Coulomb are placed at three points. As $A(6,6), B(8,8)$ and $C(1,5)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
15. If the Charge of a particle is 4.5×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 9×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
16. If the Charge of a particle is 6×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 3.6×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
17. If the Charge of a particle is 4.5×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 9×10^{-7} coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
18. If the Charge of a particle is 3×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 6×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
19. If three charges $Q_{1}=0.000162$ Coulomb, $Q_{2}=-8.100001 \times 10^{-5}$ Coulomb and $Q_{3}=0.000234$ Coulomb are placed at three points. As A $(1,9), B(11,10)$ and $C(14,6)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
20. If Four charges $Q_{1}=9.1 \times 10^{-5}$ Coulomb, $Q_{2}=-2.8 \times 10^{-5}$ Coulomb, $Q_{3}=0.000126$ Coulomb $Q_{4}=-$ 9.8×10^{-5} Coulomb are placed at three points. As A $(2,6), \mathrm{B}(8,11), \mathrm{C}(16,8)$ and $\mathrm{D}(4,16)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
21. If three charges $Q_{1}=1.6 \times 10^{-5}$ Coulomb, $Q_{2}=-2.8 \times 10^{-5}$ Coulomb and $Q_{3}=4.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,5), B(5,4)$ and $C(12,12)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
22. If Four charges $Q_{1}=2.8 \times 10^{-5}$ Coulomb, $Q_{2}=-1.6 \times 10^{-5}$ Coulomb, $Q_{3}=0.000116$ Coulomb $Q_{4}=-$ 6.8×10^{-5} Coulomb are placed at three points. As A $(0,6), B(4,8), C(0,13)$ and $D(-1,16)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
23. If three charges $Q_{1}=0.000162$ Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ Coulomb and $Q_{3}=0.000126$ Coulomb are placed at three points. As A $(3,6), B(3,5)$ and $C(7,18)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
24. If the Charge of a particle is 8.1×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 4.86×10^{-6} coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
25. If three charges $Q_{1}=0.000152$ Coulomb, $Q_{2}=-4 \times 10^{-5}$ Coulomb and $Q_{3}=5.6 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,2), B(10,2)$ and $C(10,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
26. If the Charge of a particle is 4.8×10^{-6} coulomb and is at a distance of 0.8 meter from a positve charge of 3.84×10^{-6} coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
27. If three charges $Q_{1}=6.4 \times 10^{-5}$ Coulomb, $Q_{2}=-7.2 \times 10^{-5}$ Coulomb and $Q_{3}=0.000128$ Coulomb are placed at three points. As $\mathrm{A}(7,8), B(13,3)$ and $C(9,10)$ then Find Net electrostatic force on charge at C and net
eletrostatic potential at the mid point of AB line.
28. If Four charges $Q_{1}=4.5 \times 10^{-5}$ Coulomb, $Q_{2}=-3 \times 10^{-5}$ Coulomb, $Q_{3}=0.000155$ Coulomb $Q_{4}=-0.00011$ Coulomb are placed at three points. As A $(5,1), \mathrm{B}(1,14), \mathrm{C}(12,8)$ and $\mathrm{D}(-4,21)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
29. If Four charges $Q_{1}=1.9 \times 10^{-5}$ Coulomb, $Q_{2}=-4 \times 10^{-6}$ Coulomb, $Q_{3}=1.5 \times 10^{-5}$ Coulomb $Q_{4}=-2.1 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,2)$, B $(11,4), C(15,5)$ and D $(-4,5)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
30. If three charges $Q_{1}=-1.1 \times 10^{-5}$ Coulomb, $Q_{2}=9 \times 10^{-6}$ Coulomb and $Q_{3}=-5 \times 10^{-6}$ Coulomb are placed at three points. As A $(6,2), B(14,11)$ and C $(9,8)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
31. If three charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-1.6 \times 10^{-5}$ Coulomb and $Q_{3}=5 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,7), B(6,1)$ and $C(9,16)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
32. If three charges $Q_{1}=-1.5 \times 10^{-5}$ Coulomb, $Q_{2}=6 \times 10^{-6}$ Coulomb and $Q_{3}=-2.5 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,8), B(2,12)$ and $C(17,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
33. If Four charges $Q_{1}=-9 \times 10^{-6}$ Coulomb, $Q_{2}=5 \times 10^{-6}$ Coulomb, $Q_{3}=-3 \times 10^{-5}$ Coulomb $Q_{4}=2.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,8), \mathrm{B}(5,8), \mathrm{C}(16,3)$ and $\mathrm{D}(8,23)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
34. If Four charges $Q_{1}=2.8 \times 10^{-5}$ Coulomb, $Q_{2}=-4.9 \times 10^{-5}$ Coulomb, $Q_{3}=2.1 \times 10^{-5}$ Coulomb $Q_{4}=$ 7.7×10^{-5} Coulomb are placed at three points. As A $(8,1), B(11,2), C(3,1)$ and $D(9,18)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
35. If the Charge of a particle is 6.3×10^{-6} coulomb and is at a distance of 0.2 meter from a positve charge of 1.26×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
36. If three charges $Q_{1}=3.8 \times 10^{-5}$ Coulomb, $Q_{2}=-1.4 \times 10^{-5}$ Coulomb and $Q_{3}=8 \times 10^{-6}$ Coulomb are placed at three points. As A $(5,5), B(8,3)$ and $C(2,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
37. If three charges $Q_{1}=0.000117$ Coulomb, $Q_{2}=-6.3 \times 10^{-5}$ Coulomb and $Q_{3}=0.00018$ Coulomb are placed at three points. As A $(8,5), B(6,8)$ and $C(1,15)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
38. If Four charges $Q_{1}=8.4 \times 10^{-5}$ Coulomb, $Q_{2}=-6.3 \times 10^{-5}$ Coulomb, $Q_{3}=9.1 \times 10^{-5}$ Coulomb $Q_{4}=-$ 4.2×10^{-5} Coulomb are placed at three points. As A $(4,7), B(13,3), C(3,3)$ and $D(-1,18)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
39. If Four charges $Q_{1}=7.5 \times 10^{-5}$ Coulomb, $Q_{2}=-3 \times 10^{-5}$ Coulomb, $Q_{3}=1.5 \times 10^{-5}$ Coulomb $Q_{4}=-0.000105$ Coulomb are placed at three points. As A $(6,4), B(9,6), C(1,3)$ and $D(5,10)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
40. If the Charge of a particle is 4.5×10^{-6} coulomb and is at a distance of 0.4 meter from a positve charge of 1.8×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
41. If Four charges $Q_{1}=-1.7 \times 10^{-5}$ Coulomb, $Q_{2}=9 \times 10^{-6}$ Coulomb, $Q_{3}=-4 \times 10^{-6}$ Coulomb $Q_{4}=2.9 \times 10^{-5}$ Coulomb are placed at three points. As A $(7,9)$, B $(8,11), C(9,3)$ and $D(8,5)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
42. If Four charges $Q_{1}=1.4 \times 10^{-5}$ Coulomb, $Q_{2}=-8 \times 10^{-6}$ Coulomb, $Q_{3}=2.8 \times 10^{-5}$ Coulomb $Q_{4}=-5.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,7), B(0,6), C(4,17)$ and $D(8,6)$ then Find Net electrostatic
force on charge at D and Net electrostatic Potential at the mid point of $A B$.
43. If the Charge of a particle is 6×10^{-7} coulomb and is at a distance of 0.8 meter from a positve charge of 4.8×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
44. If the Charge of a particle is 1.2×10^{-6} coulomb and is at a distance of 0.4 meter from a positve charge of 4.8×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
45. If three charges $Q_{1}=5.6 \times 10^{-5}$ Coulomb, $Q_{2}=-3.2 \times 10^{-5}$ Coulomb and $Q_{3}=8 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,8), B(9,11)$ and $C(2,8)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
46. If three charges $Q_{1}=1.5 \times 10^{-5}$ Coulomb, $Q_{2}=-2.1 \times 10^{-5}$ Coulomb and $Q_{3}=8.7 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,6), B(12,10)$ and C $(4,13)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
47. If the Charge of a particle is 3.6×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 2.16×10^{-6} coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
48. If the Charge of a particle is 2.7×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 1.62×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
49. If the Charge of a particle is 4.5×10^{-6} coulomb and is at a distance of 1.2 meter from a positve charge of 5.4×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
50. If three charges $Q_{1}=8.5 \times 10^{-5}$ Coulomb, $Q_{2}=-4.5 \times 10^{-5}$ Coulomb and $Q_{3}=5 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,1), B(11,10)$ and $C(16,2)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of $A B$ line.
51. If three charges $Q_{1}=2.4 \times 10^{-5}$ Coulomb, $Q_{2}=-3.6 \times 10^{-5}$ Coulomb and $Q_{3}=3 \times 10^{-5}$ Coulomb are placed at three points. As $A(7,7), B(3,3)$ and $C(2,1)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
52. If Four charges $Q_{1}=4.2 \times 10^{-5}$ Coulomb, $Q_{2}=-1.2 \times 10^{-5}$ Coulomb, $Q_{3}=3.9 \times 10^{-5}$ Coulomb $Q_{4}=-$ 5.7×10^{-5} Coulomb are placed at three points. As A $(2,9), B(13,13), C(1,14)$ and $D(9,12)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
53. If the Charge of a particle is 1.8×10^{-6} coulomb and is at a distance of 0.4 meter from a positve charge of 7.200001×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
54. If the Charge of a particle is 9.000001×10^{-7} coulomb and is at a distance of 0.8 meter from a positve charge of 7.200001×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
55. If the Charge of a particle is 3.6×10^{-6} coulomb and is at a distance of 1.4 meter from a positve charge of 5.04×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
56. If the Charge of a particle is 9.000001×10^{-7} coulomb and is at a distance of 1.4 meter from a positve charge of 1.26×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
57. If three charges $Q_{1}=-2.2 \times 10^{-5}$ Coulomb, $Q_{2}=1.6 \times 10^{-5}$ Coulomb and $Q_{3}=-1.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,2), B(10,3)$ and $C(12,5)$ then Find Net electrostatic force on charge at C and net
eletrostatic potential at the mid point of AB line.
58. If Four charges $Q_{1}=6 \times 10^{-6}$ Coulomb, $Q_{2}=-1.5 \times 10^{-5}$ Coulomb, $Q_{3}=1.8 \times 10^{-5}$ Coulomb $Q_{4}=-4.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(0,5), \mathrm{B}(7,4), \mathrm{C}(1,7)$ and $\mathrm{D}(4,22)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
59. If Four charges $Q_{1}=-4 \times 10^{-6}$ Coulomb, $Q_{2}=4 \times 10^{-6}$ Coulomb, $Q_{3}=-3.1 \times 10^{-5}$ Coulomb $Q_{4}=2.7 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,7), B(9,2), C(4,18)$ and D $(8,29)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
60. If Four charges $Q_{1}=-1.2 \times 10^{-5}$ Coulomb, $Q_{2}=8 \times 10^{-6}$ Coulomb, $Q_{3}=-1.4 \times 10^{-5}$ Coulomb $Q_{4}=2.4 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,9)$, B $(-2,5), C(3,9)$ and D $(3,16)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
61. If Four charges $Q_{1}=2.7 \times 10^{-5}$ Coulomb, $Q_{2}=-1.2 \times 10^{-5}$ Coulomb, $Q_{3}=2.7 \times 10^{-5}$ Coulomb $Q_{4}=-$ 2.1×10^{-5} Coulomb are placed at three points. As A $(0,3), B(-2,-2), C(8,6)$ and $D(6,6)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
62. If Four charges $Q_{1}=-9 \times 10^{-6}$ Coulomb, $Q_{2}=8 \times 10^{-6}$ Coulomb, $Q_{3}=-2.2 \times 10^{-5}$ Coulomb $Q_{4}=2.7 \times 10^{-5}$ Coulomb are placed at three points. As A $(7,2)$, B $(13,5), C(7,5)$ and $D(-1,28)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
63. If Four charges $Q_{1}=0.000104$ Coulomb, $Q_{2}=-7.2 \times 10^{-5}$ Coulomb, $Q_{3}=0.000176$ Coulomb $Q_{4}=-8.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,4), B(12,14), C(10,14)$ and $D(-4,22)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
64. If three charges $Q_{1}=-1.9 \times 10^{-5}$ Coulomb, $Q_{2}=4 \times 10^{-6}$ Coulomb and $Q_{3}=-1.9 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,1), B(13,13)$ and $C(15,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
65. If Four charges $Q_{1}=0.000119$ Coulomb, $Q_{2}=-6.3 \times 10^{-5}$ Coulomb, $Q_{3}=0.000259$ Coulomb $Q_{4}=-0.000161$ Coulomb are placed at three points. As A $(1,8), \mathrm{B}(-2,-1), \mathrm{C}(0,8)$ and D $(8,2)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
66. If three charges $Q_{1}=0.000136$ Coulomb, $Q_{2}=-5.6 \times 10^{-5}$ Coulomb and $Q_{3}=6.4 \times 10^{-5}$ Coulomb are placed at three points. As A $(1,2), B(2,1)$ and $C(19,6)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
67. If the Charge of a particle is 4.8×10^{-6} coulomb and is at a distance of 1.2 meter from a positve charge of 5.76×10^{-6} coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
68. If three charges $Q_{1}=3.8 \times 10^{-5}$ Coulomb, $Q_{2}=-1.8 \times 10^{-5}$ Coulomb and $Q_{3}=5.2 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,9), B(6,1)$ and $C(2,13)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
69. If the Charge of a particle is 3×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 1.8×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
70. If three charges $Q_{1}=9 \times 10^{-5}$ Coulomb, $Q_{2}=-3.5 \times 10^{-5}$ Coulomb and $Q_{3}=0.00013$ Coulomb are placed at three points. As A $(4,3), B(10,8)$ and $C(9,4)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
71. If Four charges $Q_{1}=2.1 \times 10^{-5}$ Coulomb, $Q_{2}=-2.7 \times 10^{-5}$ Coulomb, $Q_{3}=0.000111$ Coulomb $Q_{4}=-6.3 \times 10^{-5}$ Coulomb are placed at three points. As A $(8,1), B(14,14), C(17,18)$ and $D(1,18)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
72. If three charges $Q_{1}=6.4 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb and $Q_{3}=0.000108$ Coulomb are placed at three points. As A $(5,3), B(10,6)$ and $C(15,5)$ then Find Net electrostatic force on charge at C and net
eletrostatic potential at the mid point of AB line.
73. If three charges $Q_{1}=3.6 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb and $Q_{3}=5.2 \times 10^{-5}$ Coulomb are placed at three points. As A $(2,7), B(10,9)$ and $C(7,16)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
74. If three charges $Q_{1}=5.6 \times 10^{-5}$ Coulomb, $Q_{2}=-6.3 \times 10^{-5}$ Coulomb and $Q_{3}=0.000133$ Coulomb are placed at three points. As A $(3,4), B(7,13)$ and $C(10,13)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
75. If the Charge of a particle is 8.4×10^{-6} coulomb and is at a distance of 0.4 meter from a positve charge of 3.36×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
76. If three charges $Q_{1}=3.3 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb and $Q_{3}=8.7 \times 10^{-5}$ Coulomb are placed at three points. As A $(1,4), B(1,8)$ and $C(9,1)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
77. If three charges $Q_{1}=4.8 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb and $Q_{3}=2.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(7,5), B(4,4)$ and $C(2,19)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
78. If Four charges $Q_{1}=0.000108$ Coulomb, $Q_{2}=-4.8 \times 10^{-5}$ Coulomb, $Q_{3}=7.8 \times 10^{-5}$ Coulomb $Q_{4}=-$ 8.4×10^{-5} Coulomb are placed at three points. As A $(9,2), \mathrm{B}(4,10), \mathrm{C}(14,0)$ and $\mathrm{D}(-2,18)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
79. If Four charges $Q_{1}=-1.6 \times 10^{-5}$ Coulomb, $Q_{2}=1 \times 10^{-5}$ Coulomb, $Q_{3}=-6 \times 10^{-5}$ Coulomb $Q_{4}=3.6 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,6), B(5,-1), C(9,4)$ and D $(2,26)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
80. If the Charge of a particle is -6×10^{-7} coulomb and is at a distance of 0.6 meter from a positve charge of 3.6×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
81. If Four charges $Q_{1}=9 \times 10^{-6}$ Coulomb, $Q_{2}=-6 \times 10^{-6}$ Coulomb, $Q_{3}=3.4 \times 10^{-5}$ Coulomb $Q_{4}=-1.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(0,0), B(10,10), C(5,16)$ and $D(3,0)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
82. If Four charges $Q_{1}=-1 \times 10^{-5}$ Coulomb, $Q_{2}=1.4 \times 10^{-5}$ Coulomb, $Q_{3}=-2.6 \times 10^{-5}$ Coulomb $Q_{4}=3.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(4,5)$, B $(11,4), C(0,3)$ and D $(-4,22)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
83. If the Charge of a particle is -6×10^{-7} coulomb and is at a distance of 0.6 meter from a positve charge of 3.6×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
84. If the Charge of a particle is -6×10^{-7} coulomb and is at a distance of 0.6 meter from a positve charge of 3.6×10^{-7} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
85. If three charges $Q_{1}=-1.6 \times 10^{-5}$ Coulomb, $Q_{2}=1.6 \times 10^{-5}$ Coulomb and $Q_{3}=-1 \times 10^{-5}$ Coulomb are placed at three points. As A $(1,4), B(3,9)$ and $C(17,17)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
86. If Four charges $Q_{1}=9.8 \times 10^{-5}$ Coulomb, $Q_{2}=-4.2 \times 10^{-5}$ Coulomb, $Q_{3}=0.000238$ Coulomb $Q_{4}=-0.000168$ Coulomb are placed at three points. As A $(2,9), B(13,1), C(6,5)$ and $D(5,-2)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
87. If three charges $Q_{1}=0.000171$ Coulomb, $Q_{2}=-4.5 \times 10^{-5}$ Coulomb and $Q_{3}=0.000135$ Coulomb are placed at three points. As A $(4,8), B(14,9)$ and $C(8,11)$ then Find Net electrostatic force on charge at C and net
eletrostatic potential at the mid point of AB line.
88. If three charges $Q_{1}=7.2 \times 10^{-5}$ Coulomb, $Q_{2}=-5.6 \times 10^{-5}$ Coulomb and $Q_{3}=7.2 \times 10^{-5}$ Coulomb are placed at three points. As A $(6,2), B(6,12)$ and $C(12,13)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
89. If Four charges $Q_{1}=1.8 \times 10^{-5}$ Coulomb, $Q_{2}=-5.4 \times 10^{-5}$ Coulomb, $Q_{3}=0.000279$ Coulomb $Q_{4}=-0.000162$ Coulomb are placed at three points. As A $(3,0), B(7,7), C(-1,-1)$ and D $(1,25)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
90. If three charges $Q_{1}=1.8 \times 10^{-5}$ Coulomb, $Q_{2}=-8 \times 10^{-6}$ Coulomb and $Q_{3}=5.4 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,4), B(10,6)$ and $C(5,14)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
91. If three charges $Q_{1}=5.5 \times 10^{-5}$ Coulomb, $Q_{2}=-2 \times 10^{-5}$ Coulomb and $Q_{3}=9.5 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,1), B(4,4)$ and $C(16,2)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
92. If three charges $Q_{1}=3.9 \times 10^{-5}$ Coulomb, $Q_{2}=-2.4 \times 10^{-5}$ Coulomb and $Q_{3}=4.2 \times 10^{-5}$ Coulomb are placed at three points. As $A(1,4), B(6,1)$ and $C(2,3)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
93. If Four charges $Q_{1}=1.8 \times 10^{-5}$ Coulomb, $Q_{2}=-2.7 \times 10^{-5}$ Coulomb, $Q_{3}=2.7 \times 10^{-5}$ Coulomb $Q_{4}=-$ 4.5×10^{-5} Coulomb are placed at three points. As A $(7,1), B(2,-1), C(14,10)$ and $D(9,10)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of AB .
94. If three charges $Q_{1}=0.000108$ Coulomb, $Q_{2}=-4.2 \times 10^{-5}$ Coulomb and $Q_{3}=3.6 \times 10^{-5}$ Coulomb are placed at three points. As A $(7,3), B(1,1)$ and $C(12,10)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
95. If the Charge of a particle is 5.4×10^{-6} coulomb and is at a distance of 1.4 meter from a positve charge of 7.56×10^{-6} coulomb . Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
96. If three charges $Q_{1}=0.000102$ Coulomb, $Q_{2}=-3 \times 10^{-5}$ Coulomb and $Q_{3}=1.8 \times 10^{-5}$ Coulomb are placed at three points. As A $(5,7), B(8,3)$ and $C(15,1)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
97. If Four charges $Q_{1}=1.2 \times 10^{-5}$ Coulomb, $Q_{2}=-3.2 \times 10^{-5}$ Coulomb, $Q_{3}=1.2 \times 10^{-5}$ Coulomb $Q_{4}=-$ 6.8×10^{-5} Coulomb are placed at three points. As A $(1,9), B(-2,14), C(-2,11)$ and $D(-2,4)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
98. If the Charge of a particle is 6×10^{-6} coulomb and is at a distance of 0.6 meter from a positve charge of 3.6×10^{-6} coulomb. Then find the Electrostatic Force between them and locate the neutral point between the charges also find total electrical potential at neutral point.
99. If Four charges $Q_{1}=9.5 \times 10^{-5}$ Coulomb, $Q_{2}=-2 \times 10^{-5}$ Coulomb, $Q_{3}=4.5 \times 10^{-5}$ Coulomb $Q_{4}=-8.5 \times 10^{-5}$ Coulomb are placed at three points. As A $(9,0), B(10,12), C(0,10)$ and $D(1,5)$ then Find Net electrostatic force on charge at D and Net electrostatic Potential at the mid point of $A B$.
100. If three charges $Q_{1}=-8 \times 10^{-6}$ Coulomb, $Q_{2}=1.8 \times 10^{-5}$ Coulomb and $Q_{3}=-4 \times 10^{-5}$ Coulomb are placed at three points. As A $(3,1)$, B $(12,13)$ and C $(18,9)$ then Find Net electrostatic force on charge at C and net eletrostatic potential at the mid point of AB line.
