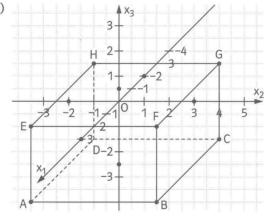
1 Das dreidimensionale Koordinatensystem (Lösungen)

Buch S. 91

4 P(2|3|0); Q(4|4|0); $x_3 = 0$; man zeichnet die Parallelen zur x_1 - und x_2 -Achse durch die Punkte P und O.


R(0|3|1); S(0|-2|-1); $x_1 = 0$; man zeichnet die Parallelen zur x_2 - und x_3 -Achse durch die Punkte R und S.

T(2|0|2); U(3|0|-1); $x_2 = 0$; man zeichnet die Parallelen zur x_1 - und x_3 -Achse durch die Punkte T und U.

- **5** a) $(x_1$ und x_2 -Koordinaten bleiben); A'(2|0|0); B'(-1|2|1); C'(-2|3|-4); D'(3|4|2)
 - b) $(x_2$ und x_3 -Koordinaten bleiben); A'(-2|0|0); B'(1|2|-1); C'(2|3|4); D'(-3|4|-2)
 - c) $(x_1$ und x_3 -Koordinaten bleiben); A'(2|0|0); B'(-1|-2|-1); C'(-2|-3|4); D'(3|-4|-2)
 - d) (alle Koordinaten verändern ihr Vorzeichen); A'(-2|0|0); B'(1|-2|1); C'(2|-3|-4); D'(-3|-4|2)

Buch S. 92

10 a)

$$\overline{AB} = x_2(C) - x_2(E) = 5$$
; $\overline{AE} = x_3(E) - x_3(C) = 3$; $\overline{AD} = x_1(E) - x_1(C) = 5$

b) A(3|-2|-2,5); B(3|3|-2,5); C(-2|3|-2,5); D(-2|-2|-2,5); E(3|-2|0,5); F(3|3|0,5); G(-2|3|0,5); H(-2|-2|0,5)