
Note that the form is the same, but the sign is reversed for φ as opposed to α, since they are measured in 
opposite senses.
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using the product formula again. As before we end up with the sine argument
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The second parentheses comes from a table of trig identities (Tuma, Engineering Mathematics 
Handbook, Third Edition, pp. 58-64 for this and other relations used here). Such a reference is 
indispensable for this kind of work. Here we used a formula for the difference of two tangents. Now we 
have just the θ-dependent factors
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Similarly for Eq(2), the terms involving θ are (here, φ is given):
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using the formula for the product of the sine and cosine of different angles. Now, to maximize this quantity 
we want the second sine to be unity, the largest it can be. For this to happen, it must be the case that
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and the last expression is unity, so Eq(2) and Eq(5) are equivalent. Next we'd like to find the optimum 
angle. This can be done for both Eq(2) and (5) using trig, or calculus. First the trig. For Eq(5) we have the 
terms involving θ (all else is constant since α is given, as is v0):
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Let's see if this is the same as Eq(2). We will need the fact that φ is -α. Using this and taking a ratio,
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and the downslope (along the hill) distance, for any θ, is claimed to be

(4)θopt
π
4

α
2

−=

A reference book has a formulation for the optimum launch angle θ at which we fire the projectile for a 
sloped terrain, with angle α measured positive clockwise from the horizontal (French, Newtonian 
Mechanics, p112). This angle is stated to be
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We can also find this optimum angle using calculus, of course, by differentiating Eq(2) or Eq(5) with 
respect to θ and setting the derivative to zero. Solving for θ gives the critical value. This is tedious; it has 
been done by hand. It is an exercise in trig identities and there is no point in typing all that, since there is 
no new physics there.Suffice to say that we do get the same results as shown above for the optimum 
angle, for both formulations.

FInally we would like to have the maximum distance, when we use the optimum angle. From Eq(5),
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which is, using the sine-cosine product again,
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This is the result given in French, but it can be written more simply as
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Note that if the angle of the hill is zero, the maximum range is as we have for the y(0) = 0 case for a 
horizontal terrain, and the optimum angle from Eq(4) will just be 45 degrees. For Eq(2) we can go 
through a similar exercise, and we will find that
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This is a plot of Eq(5) for a hill angle α of 
30 degrees, initial velocity 5 m/s. Eq(2) 
looks exactly like this. The optimum 
point, from Eq(4) and Eq(6), is indicated 
by the square. Note that the distance is 
not zero if the launch angle is zero, but it 
is zero for a vertical launch.
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