

Vertex	Shortest distance from A	Previous vertex

A
B
C
D
E

1. Initialisation step: Unvisited $=[A, B, C, D, E]$

Vertex	Shortest distance from A	Previous vertex
A	$\mathbf{0}$	
B	∞	undefined
C	∞	undefined
D	∞	undefined
E	∞	undefined

2. First iteration:

Unvisited $=[B, C, D, E]$

Vertex	Shortest distance from A	Previous vertex
A	$\mathbf{0}$	
B	$\mathbf{4}$	A
C	$\mathbf{3}$	A
D	∞	undefined
E	∞	undefined

3. Second iteration:

Unvisited $=[B, D, E]$

Vertex	Shortest distance from A	Previous vertex
A	0	
B	4	A
C	3	A
D	5	C
E	9	C

4. Third iteration:

Unvisited $=[\mathrm{D}, \mathrm{E}]$

Vertex	Shortest distance from A	Previous vertex
A	0	
B	4	A
C	3	A
D	5	C
E	9	C

5. Fourth iteration:

Unvisited $=[\mathrm{E}]$

Vertex	Shortest distance from A	Previous vertex
A	0	
B	4	A
C	3	A
D	5	C
E	8	D

6. Final iteration: A-E

Unvisited = []

Vertex	Shortest distance from A	Previous vertex
A	0	
B	4	A
C	3	A
D	5	C
E	8	D

The shortest distance from A to E is $\{A C D E\}$

