Linse (Geometrie):

- 1. Koordinatengitter und -achsen ausblenden
- 2. Schieberegler erstellen und sperren
 - 1. $f \in [10,50]$
 - 2. $g \in [f, 50]$
 - 3. $G \in [0,20]$
- 3. Definiere $B = G \cdot \frac{b}{g}$, $b = (\frac{1}{f} \frac{1}{g})^{-1}$
- 4. Konstruiere den Hintergrund:
 - 1. Linsenebene: Strecke zwischen (0, -20) und $(0, 20) \Rightarrow$ Name ausblenden
 - 2. Optische Achse: Strecke zwischen (-70,0) und (70,0) => gestrichelt, Name ausblenden
- 5. Definiere die sichtbaren Punkte
 - 1. A, A', F
- 6. Konstruiere den Strahlengang
 - Strecke oder Vektor zwischen zwei Punkten Strahlengang = {Strecke(...), Strecke(...), ...}
 - 2. Färbe alle Strecken rot

Schwebung (Funktionen):

- 1. Schieberegler erstellen und sperren
 - 1. $f_1 \in [260, 520]$
 - 2. $f_2 \in [260, 520]$
- 2. Funktionen und Summe definieren. Namen ausblenden.
 - 1. $f(x) = \sin(2\pi f_1 x)$
 - 2. $g(x) = \sin(2\pi f_2 x)$
 - 3. h(x) = f(x) + g(x)
- 3. Koordinatengitter entfernen
- 4. Split View einstellen, sodass das zweite Grafikfenster unter dem anderen liegt
- 5. In den Einstellungen der Funktionen einstellen, dass
 - 1. f(x), g(x) im oberen Fenster und
 - 2. h(x) im unteren Fenster sichtbar ist
- 6. x-Achse bei beiden Fenstern gleich skalieren

Luftreibung (Animation):

- 1. Definiere physikalische Größen
 - 1. Erdbeschleunigung g
 - 2. Masse m
 - 3. Reibungskoeffizient k
 - 4. In Abhängigkeit von m, g und k: Endgeschwindigkeit v_e
- 2. Erstelle einen Schieberegler (und sperre diesen), er gibt die Zeit an 1. $t \in [0,1]$
- Definiere die notwendigen Funktion und blende diese aus
 s(t)
- 4. Definiere den fallenden Punkt oder Objekt in Abhängigkeit von t 1. zB P = (0,s(t))
- 5. Koordinatengitter und -achsen entfernen
- 6. Erstelle eine Schaltfläche, die eine Animation startet (siehe Karte Animation)