Verbesserung der Hausaufgabe

Seite 105

4 a)
$$\overline{AB} = \sqrt{65}$$
; $\overline{AC} = \sqrt{130}$; $\overline{BC} = \sqrt{65}$

$$\overline{AC} = \sqrt{130}$$
:

$$\overline{BC} = \sqrt{65}$$

Dreieck ABC ist gleichschenklig.

b)
$$\overline{AB} = \sqrt{181}$$
; $\overline{AC} = \sqrt{185}$; $\overline{BC} = \sqrt{178}$

$$AC = \sqrt{185}$$
;

c)
$$\overline{AB} = \sqrt{21}$$
; $\overline{AC} = 3$; $\overline{BC} = \sqrt{8}$

$$\overline{AC} = 3;$$

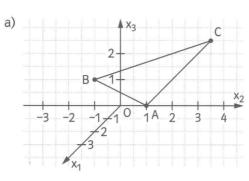
$$BC = \sqrt{8}$$

d)
$$\overline{AB} = \sqrt{13}$$
; $\overline{AC} = \sqrt{13}$; $\overline{BC} = \sqrt{14}$

$$\overline{AC} = \sqrt{13}$$
:

$$\overline{BC} = \sqrt{14}$$

Dreieck ABC ist gleichschenklig.


 $\overline{PQ} = \sqrt{1^2 + 2^2 + (p-5)^2} = 3 \implies (p-5)^2 = 4;$

$$(1) p-5=2$$

$$\Rightarrow$$
 p = 7 P₁(5|0|7)

(2)
$$p-5=-2 \Rightarrow p=3 P_2(5|0|3)$$

8

b)
$$\overline{AB} = \sqrt{4+1+4} = 3;$$

$$\overline{AC} = \sqrt{1+4+4} = 3;$$

$$\overline{BC} = \sqrt{9+9} = 3\sqrt{2};$$

$$\overline{AB}^2 + \overline{AC}^2 = \overline{BC}^2$$

Das Dreieck ABC ist gleichschenklig rechtwinklig.