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法)
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Taylor's theorem and Taylor series
In this section, we shall consider a polynomial approximation which mimics a function  near one
given point. We will seek coefficients  such that the polynomial

approximates to  near , where assuming that  is  differentiable at .
Therefore , and we try to choose the coefficients .

The Taylor series of a real or complex-valued function  that is infinitely differentiable at a real or
complex number  is the power series

where  denotes the factorial of  and  denotes the  derivative of  evaluated at the
point . In the more compact sigma notation, this can be written as

The derivative of order zero of  is defined to be  itself and  and  are both defined to be
1. When , the series is also called a [Maclaurin series][2].

For instance:

The Taylor series for the exponential function  at  is

The above expansion holds because the derivative of  with respect to  is also  and  equals
1. This leaves the terms  in the numerator and  in the denominator for each term in the
infinite sum.

Euler formula: 
The Taylor series of function  at  is
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Let , where  is imaginary unit, which satisfied 
.

left side means  

right side equals to 

Therefore

The above sums are the taylor series sum for function  and . (they have the following
Colin Maclaurin series, for all )

可见，  是偶函数，  是奇函数。 
Of course, we can use Taylor expansion to get the above formula.

The even-th derivative function of  at  equals to 0, and odd-th derivative function of 
 at  equals to 

Polynomial approximation theorem
Question: How to solve the quation ?

1. First,  has the solution 

ez =   

n=0

∑
∞

n!
zn

=  +  +  +  +  +  + ⋯
0!
z0

1!
z1

2!
z2

3!
z3

4!
z4

5!
z5

= 1 + z +  +  +  +  + ⋯ .
2
z2

6
z3

24
z4

120
z5

z = ix i i =4k 1, i =4k+1 i, i =4k+2 −1, i =4k+3

−i

e =ix cos(x) + i sin(x)

 1 + ix −  − i  +  + i  −  − i  + ⋯ .
2!
x2

3!
x3

4!
x4

5!
x5

6!
x6

7!
x7

cos(x) = 1 −  +
2!
x2

 −
4!
x4

 +
6!
x6

⋯

sin(x) = x −  +
3!
x3

 −
5!
x5

 +
7!
x7

⋯

cos(x) sin(x)
x

cos(x) =   

n=0

∑
∞

(2n)!
(−1) xn 2n

= 1 −  +  −  + ⋯ .
2!
x2

4!
x4

6!
x6

sin(x) =   

n=0

∑
∞

(2n + 1)!
(−1) xn 2n+1

= x −  +  −  + ⋯ .
3!
x3

5!
x5

7!
x7

cos(x) sin(x)

sin (x) =(2k)
 =

dx

d sin(x)(2k)

(−1) sin(x)k

sin (x) =(2k+1) (−1) cos(x)k

sin(x) x = 0
sin(x) x = 0 (−1)k

sin(x) = 0

sin(x) = 0 {kπ，k = 0, ±1, ±2, ⋯ .}

https://en.wikipedia.org/wiki/Colin_Maclaurin


2. According to the fundamental theorem of algebra (polynomial approximation theorem) , Let's
suppose  is a polynomial.

Now limit at x tends to 0, we shall get

Therefore we got

Let , we get

see also John Wallis' product for 

Similarly, we can get

Euler identity
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1. From Taylor expansion, we get 

2. From polynomial approximation theorem and equation solution, we get 

3. Compare the degree 3 of x-term, we get the coefficients shoulb be equivalent. 

Therefore 

收敛速度还可以接受。

Gregory-Leibniz series
The series for the inverse tangent function, which is also known as Gregory's series, can be given
by: 

推导过程如下：

The Leibniz formula for  can be obtained by putting   into the above inverse-

tangent series.
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As you can see, this converges very slowly(收敛极慢！不可取), with large, alternating over-estimates
and under-estimates.

Nilakantha Series

This is the faster convergent method for pi. 
这是计算圆周率的更快一点的收敛方法。

Viete's Formula
Viète's formula is the following infinite product of nested radicals representing the mathematical
constant : 

 

It is named after François Viète (1540–1603), who published it in 1593.

Viète's formula may be rewritten and understood as a limit expression. 

 

where , with initial condition .

Viète's formula may be obtained as a special case of a formula given more than a century later by
Leonhard Euler, who discovered that:

Substituting 

 in this formula yields:

Then, expressing each term of the product on the right as a function of earlier terms using the half-
angle formula:

gives Viète's formula.
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It is also possible to derive from Viète's formula a related formula for  that still involves nested
square roots of two, but uses only one multiplication: ref Viete formula

反三角函数 

同理可以得到

Taylor级数和Maclaurin Series的实现
在GeoGebra中可以轻松实现多项式之和逼近各种函数。

1. 先定义次数Order的滑条 
2. 再定义要逼近的函数，如 
3. 调用函数 
4. 调用函数  可以显示级数

TaylorSeries的多项式逼近演示GGB

计算  收敛速度极快算法
代数和几何结合的方法。

采用刘徽割圆术，用正n边形逼近圆的方法，实现计算圆周率  的目的。
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记 正n边形的边长为 , 由正n边形产生的正 2n 边形的边长为 , 则如图可有 

假定圆的半径 , 则有正6边形的边长 , 利用迭代关系式可以快速求出周长 

上述算法收敛性很快！

在GeoGebra中实现起来也很方便。

1. 先建立迭代次数滑动条 
2. 再建立迭代函数 
3. 然后用GGB的迭代命令  

，初始值取正6边形时的值1.
4. 正2n边形的半周长为 

这一算法的收敛也极快，正多边形的边数以指数级增长。
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