Properties of The Centroid

In the figure, *AD* and *BE* are the medians of $\triangle ABC$ intersect at *G*.

(a) Let the height of $\triangle ADB$ and $\triangle ADB$ be h_1 , as shown in Fig.1. Prove that the area of $\triangle ADB$ = the area of $\triangle ACD$.

(b) Let the height of $\triangle GDB$ and $\triangle GDC$ be h_2 , as shown in Fig.2. Prove that the area of $\triangle GDB =$ the area of $\triangle GDC$.

Fig. 2

(c) Using the results of (a) and (b), prove that the area of $\triangle AGB$ = the area of $\triangle AGC$.

(d) From that the area of $\triangle AOD$ – the area of $\triangle BO$	(d)	Prove that the area of	$\triangle AGB$ = the area of $\triangle BGG$
--	-----	------------------------	---

(e) (i) Let the area of $\triangle ABC$ be *S*. Express the areas of $\triangle AGC$ and $\triangle CGD$ in terms of *S*.

(ii) Let the height of $\triangle CGD$ and $\triangle AGC$ be h_3 , as shown in Fig.3.

Using the result of (e)(i), prove that AG : GD = 2 : 1.

