Properties of The Centroid

In the figure, $A D$ and $B E$ are the medians of $\triangle A B C$ intersect at G.

(a) Let the height of $\triangle A D B$ and $\triangle A D B$ be h_{1}, as shown in Fig.1.

Prove that the area of $\triangle A D B=$ the area of $\triangle A C D$.
\qquad
\qquad
\qquad

Fig. 1
\qquad
(b) Let the height of $\triangle G D B$ and $\triangle G D C$ be h_{2}, as shown in Fig.2.

Prove that the area of $\triangle G D B=$ the area of $\triangle G D C$.
\qquad
\qquad
\qquad

Fig. 2
\qquad
(c) Using the results of (a) and (b), prove that the area of $\triangle A G B=$ the area of $\triangle A G C$.
\qquad
\qquad
\qquad
(d) Prove that the area of $\triangle A G B=$ the area of $\triangle B G C$.
\qquad
\qquad
\qquad
\qquad
\qquad
(e) (i) Let the area of $\triangle A B C$ be S. Express the areas of $\triangle A G C$ and $\triangle C G D$ in terms of S.
\qquad
\qquad
\qquad
\qquad
(ii) Let the height of $\triangle C G D$ and $\triangle A G C$ be h_{3}, as shown in Fig.3.

Using the result of (e)(i), prove that $A G: G D=2: 1$.
\qquad
\qquad
\qquad

Fig. 3

