MODULO MODELLI MATEMATICI

IL METODO DELLA RICERCA VARIATA APPLICATO AL FIGLIO DEL RE E IL MESSAGGERO

DUE POSSIBILI STRATEGIE DI ANALISI DELLA SITUAZIONE

STRATEGIA N.1

Una esplorazione con il foglio elettronico potrebbe aiutare a far capire che, dopo che è avvenuto l'ennesimo incontro, il cavaliere deve tornare indietro e quindi deve percorrere il doppio della strada che lo separa dal castello prima di ripassare per la posizione in cui è avvenuto l'ennesimo incontro.

La strategia, di carattere ricorsivo, suggerita da questa osservazione potrebbe essere:

sia a_n la posizione (distanza dal castello) nella quale avviene l'ennesimo incontro. Affinché avvenga l'incontro successivo il cavaliere deve tornare indietro e poi ripassare per il luogo dove è avvenuto l'ennesimo incontro. Quindi deve percorrere una distanza $2a_n$. Nel frattempo il re è andato avanti dei 2/3 della distanza percorsa dal cavaliere.

La seguente tabella riassume i km via via percorsi e le posizioni occupate:

KM Messaggero	KM Figlio del Re	Posizione Messaggero	Posizione Figlio del Re
2a _n	$2 \cdot \frac{2}{3} a_n = \frac{4}{3} a_n$	$a_{\rm n}$	$2a_n + \frac{1}{3}a_n = \frac{7}{3}a_n$
3a _n	$\frac{2}{3} \cdot 3a_n = 2a_n$	2a _n	$3a_n$
4a _n	$\frac{8}{3}a_n$	3a _n	$\frac{11}{3}a_n$
5a _n	$\frac{10}{3}a_n$	4a _n	$\frac{13}{3}a_n$
6a _n	$4a_n$	5a _n	$5a_n$

Generalizzando, essendo k >1, numero naturale, scriviamo i termini generali che esprimono le posizioni successive e i km percorsi al trascorrere del tempo

Km Messaggero	Km Figlio del Re	Posizione Messaggero	Posizione Figlio del Re
ka_n	$\frac{2k}{3}a_n$	$(k-1)a_n$	$\left(\frac{2k+3}{3}\right)a_n$

Se vogliamo trovare il valore di k per cui il FR e il M si incontrano basterà uguagliare i coefficienti di an delle due espressioni relative alle loro posizioni:

$$k - 1 = \frac{2k + 3}{3} \leftrightarrow k = 6$$

Quindi il FR e il M si incontreranno nella posizione 5a_n.

MOOC MODELLI

MODULO MODELLI MATEMATICI



Ricordando che a_n è il giorno del loro precedente incontro, il risultato trovato ci dice che **ogni incontro** successivo all'n-esimo avviene in una posizione pari a 5 volte la precedente.

Possiamo quindi scrivere la successione ricorsiva: $\begin{cases} a_0 = 80 \\ a_{n+1} = 5a_n \end{cases}$ o quella chiusa $a(n) = 80 \cdot 5^n$

Definiamo ora la successione dei tempi in cui avvengono gli incontri:

essendo
$$t = \frac{s}{v} \to t = \frac{80.5^n}{40} = 2.5^n$$

IL FR e il M si incontrano nei giorni 2, 10, 50, 250, ...

STRATEGIA N. 2

Sia d la posizione del re e del cavaliere nel giorno dell'ennesimo incontro (d è la distanza dal castello). Prima di incontrarsi nuovamente, il cavaliere deve percorrere una distanza 2d e nel frattempo il re si è spostato di $\frac{4}{3}d$ e si trova quindi nella posizione $\frac{7}{3}d$. Immaginiamo di essere quindi in questa situazione: il cavaliere è andato al castello e ha percorso una distanza 2d in modo da essere nuovamente nella posizione d. Il re si trova quindi in $\frac{7}{3}d$.

Sia ora x il punto in cui avverrà il prossimo incontro. Il re dovrà percorrere una distanza $x - \frac{4}{3}d$ mentre il cavaliere una distanza x - d.

Quanto tempo impiegheranno?

Conoscendo le rispettive velocità (40 leghe il FR e 60 leghe il M) il M impiegherà: $\frac{x-d}{60}$ e il FR $\frac{x-\frac{7}{3}d}{40}$.

Poiché il giorno di incontro è ovviamente lo stesso per entrambi, si deve avere:

$$\frac{x-d}{60} = \frac{x - \frac{7}{3}d}{40} \leftrightarrow 40(x - d) = 60\left(x - \frac{7}{3}d\right) \leftrightarrow 20x = 100d \leftrightarrow x = 5d$$

Si incontrano nuovamente per la prima volta in una posizione che è 5 volte quella del primo incontro