Kurz GeoGebra

2.

Pravděpodobnost a statistika

GeoGebra institut Ostrava

GeoGebra institut Strava

Kurz v rámci projektu implementace krajského akčního plánu Olomouckého kraje

Tabulkový procesor má základní výpočetní funkce, které známe z programu Excel a umožňuje import dat z externího souboru. Je-li okno **Tabulka** aktivní, nabízí GeoGebra panel nástrojů pro analýzu dat. Data je možné propojit s grafickým prostředím **Nákresny** a využít jej k jejich názorné interpretaci.

Přehled nástrojů pro Tabulku (verze Klasik 5)

Nástroj pohybu

Ukazovátko

Nástroje pro analýzu dat

Analýza jednorozměrných dat
 Regresní analýza dvojrozměrných dat
 Analýza více proměnných
 Pravděpodobnostní kalkulačka

Nástroje pro seznam a tabulku

Výpočetní nástroje

Další funkce

Pravděpodobnost

Příkazem nCr(n,r) určíme hodnotu kombinačního čísla a příkazem nPr(n,r) hodnotu variačního čísla.

Popisná analýza

geometrický průměr	GeometrickyPrumer(data)
harmonický průměr	HarmonickyPrumer(data)
arimetický průměr	Prumer(data)
medián	Median(data)
modus	Modus(data)
dolní kvartil	Kvartil1(data)
horní kvartil	Kvartil3(data)
percentil	Percentil(data,p)
výběrová směrodatná odchylka	Stdev(data)
výběrový rozptyl	VyberovyRotptyl(data)

Grafy

Pro propojení dat v tabulce s nákresnou vytvoříme ze sledovaného sloupce dat v tabulce seznam pomocí volby Vytvořit seznam. V opačném případě, chceme-li do tabulky vložit prvky seznamu, použijeme příkaz NaplnitSloupec(cislo_sloupce, seznam), případně NaplnitRadek(cislo_radku, seznam), NaplnitBunky(bunky, seznam). Data v seznamu lze seřadit pomocí příkazu Tridit(seznam).

kategorie v seznamu	Unikatni(seznam)
četnost	Cetnost (seznam)
kumulativní četnost	Cetnost (true, seznam)
tabulka četností	FrekvencniTabulka(seznam)
tabulka - interval	FrekvencniTabulka(hranice_trid,seznam)
bodový graf	BodovyGraf(seznam)
histogram	<pre>SloupcovyGraf(kat_v_seznamu,seznam,sirka_sloupcu)</pre>
histogram	Histogram(hranice, cetnost(hranice,seznam))
krabicový graf	BoxPlot(nastaveni_pozice_y,meritko_y,seznam)

Příklad 1: Jevové operace

Zadání: Znázorněte základní operace s jevy - sjednocení, průnik, rozdíl.

Obrázek 1: Ukázka hotové pomůcky.

Konstrukce

Nejprve si vytvoříme obdélník představující základní prostor a poté všechny množiny, se kterými budeme pracovat.

1.	Vstup:	Do <i>Vstupu</i> postupně zadáme souřadnice bodů A–D reprezentující vrcholy obdélníku: (0,0) (6,0) (6,4) (0,4)
2.	Vstup:	Do <i>Vstupu</i> zadáme body E, F představující středy kružnic: (2, 2) (4, 2)
3.	\triangleright	Postupným klikáním na body A, B, C, D a znovu bod A vytvoříme obdélník, který bude představovat základní prostor Ω .
4.	ABC	Do pravého dolního rohu obdélníku vložíme symbol Ω (obr. 2). Ve <i>Vlastnos-</i> <i>tech</i> objektu text1 na záložce <i>Text</i> nastavíme velikost na Střední a písmo na tučné T).

			_			_					
🗘 Text					×						
Úpravy											
			_		_						
LaTeX vzorec	Sym	boly 🔻 🛛 C)bj	ekty	•						
Ωπ		Základní	>	F	_						
		×÷-	>	Ĺ							
Náhled		АВГ	>	Α	в	Г	Δ	Е	Z	н	Θ
		Σ∂∇	;	T	к	٨	М	Ν	Ξ	0	п
		Ønu	2	Ρ	Σ	т	Y	Φ	Х	Ψ	Ω
		∀∃∄	;	α	β	Y	ō	٤	ζ	η	θ
		0 1 2	;	Т	к	λ	μ	۷	ξ	0	ρ
		+ ↑ →	;	σ	T	U	¢	х	Ψ	ω	φ
		ب ب ب	;	ε	Ð	ς					
Nápověda		O★∆	>	rno	0						
		♦ ⊽◊	>								
		⊊₡₢	>								
		10 an 50	>								

Obrázek 2: Vložení symbolu Ω.

Jednotlivé množiny budou reprezentovány kružnicemi o poloměru 1.5.

5.	$ \mathbf{O} $	Vytvoříme kružnici e se středem v bodě E a poloměrem 1.5 (ve <i>Vlastnostech</i> v záložce <i>Základní</i> nastavíme <i>popisek</i> na A a zaškrtneme <i>zobrazit popis:</i> popisek).
6.	\odot	Vytvoříme kružnici f se středem v bodě F a poloměrem 1.5 (ve <i>Vlastnos-</i> <i>tech</i> v záložce <i>Základní</i> nastavíme <i>popisek</i> na B a zaškrtneme <i>zobrazit popis:</i> popisek).

Obrázek 3: Množiny A a B, základní prostor Ω .

V následujících konstrukcích ukážeme různé přístupy, jak lze jednotlivé operace s jevy graficky znázornit.

Sjednocení jevů

Ke kopírování a vkládání rovnic a textů do *Vstupu* je možné použít klávesové zkratky CTRL+C a CTRL+V, což nám mnohdy může ulehčit práci.

1.	Vstup:	Z algebraického okna postupně zkopírujeme rovnice kružnic e, f. Vložíme je do <i>Vstupu</i> a upravíme: smažeme názvy kružnic, místo = použijeme \leq a obě nerovnice spojíme logickou spojkou \lor . Logickou spojku \lor a \leq nalezneme pod \blacksquare na konci <i>Vstupu</i> .
2.	ABC	Do nákresny vložíme text Sjednocení jevů:
3.		Do nákresny vložíme zaškrtávací políčko i, dáme mu popisek A \cup B.
4.		Ve vlastnostech objektu definující sjednocení (<i>Pro pokročilé</i>) upravíme <i>Pod-mínky zobrazení objektu</i> : i

Obrázek 4: Sjednocení jevů.

Průnik jevů

Průnik lze znázornit obdobně jako sjednocení s využitím logické spojky \land . Ukážeme si způsob znázornění s využitím grafických nástrojů.

1.	$\boldsymbol{\times}$	Nalezneme průsečíky kružnic. Zvolíme nástroj a klikneme na kružnice ${\tt e}$ a f.
2.	•••	Vytvoříme dva oblouky - klikneme na střed kružnice a průsečíky (ve vlast- nostech oblouků změníme barvu a upravíme průhlednost).
3.	ABC	Do nákresny vložíme text Průnik jevů:
4.		Do nákresny vložíme zaškrtávací políčko j, dáme mu popisek A $\ \cap\ {\ B}$.
5.		Ve vlastnostech oblouků (<i>Pro pokročilé</i>) upravíme <i>Podmínky zobrazení objektu</i> : j

Obrázek 5: Průnik jevů.

Rozdíl jevů A - B

1.	•••	Klikneme na první průsečík, pak na libovolný bod na kružnici pro jev <i>A</i> a na druhý průsečík.
2.		Ve vlastnostech oblouku změníme barvu a případně upravíme neprůhled- nost.
3.	Vstup:	Vytvoříme kruhový oblouk - zadáme KruhObloukUhlu (F, G, H).
4.		Ve vlastnostech oblouku změníme barvu na bílou a nastavíme neprůhled- nost na 100.
5.	ABC	Do nákresny vložíme text Rozdíl jevů:
6.		Do nákresny vložíme zaškrtávací políčko m, dáme mu popisek A – B.
7.		Ve vlastnostech použitých oblouků (<i>Pro pokročilé</i>) upravíme <i>Podmínky zobrazení objektu</i> : m

Obrázek 6: Rozdíl jevů.

Vyzkoušejte

- 1. Upravte Booleovské hodnoty u zaškrtávacích políček tak, aby šla znázornit pouze jedna zvolená operace (*Skriptování, Po aktualizaci*).
- 2. Znázorněte rozdíl B A.
- 3. Znázorněte doplněk A'.

Příklad 2: Koláčový a sloupcový graf

Zadání: Mějme k dispozici známky studentů. Graficky znázorněte absolutní a relativní četnosti. Dále vytvořte koláčový a sloupcový graf.

Konstrukce

1.		Zobrazit \rightarrow Tabulka
2.	f_x	Zobrazí vstupní pole Tabulky.

Vytvoříme tabulku. Do sloupce A zadáme varianty známek a do sloupce B počet studentů, kteří získali danou známku.

	Α	В	С
1	známka	f	
2	1	15	
3	2	22	
4	3	35	
5			

S tabulkou pracujeme obdobně jako v Excelu.

3.		Určíme celkový počet udělených známek. Do buňky B5 zapíšeme: =suma (B2:B4)
4.		Určíme relativní četnosti jednotlivých známek. V případě první známky za- píšeme do buňky C2: =B2/\$B5\$
5.	0.21	Hodnoty relativních četností pro zbývající známky obdržíme potáhnutím za pravý dolní roh.

Některé charakteristiky lze určit i přímo v tabulce. Klikneme do libovolné buňky a zvo-

líme možnost	Σ pro součet,	počet,	\sum_{n} pro průměr,	123 p	pro minimální a	pro
maximální hod	dnotu. Následně (označíme d	ata, pro která cho	eme cl	harakteristiku vy	počítat.

	Α	В	С	D
1	známka	f	φ	
2	1	15	0.21	
3	2	22	0.31	
4	3	35	0.49	
5	celkem	72		
6				

Vytvoříme histogram (sloupcový graf). Nejprve si otevřeme Nákresnu (Zobrazit \rightarrow Nákresna).

6.	Vstup:	Do vstupního pole zadáme příkaz:	<pre>SloupcovyGraf(A2:A4,B2:B4)</pre>

Vytvoříme koláčový graf. Otevřeme Nákresnu
2 (*Zobrazit* \rightarrow *Nákresna2*). Klikneme pravým tlačítkem myši do Nákresny 2 a skryjeme osy.

7.	\odot	Vytvoříme kružnici danou středem a bodem (v Nákresně 2 se objeví kromě
		kružnice ještě střed kružníce A a bod na kružnice B).

V tabulce četností si dopočteme úhly.

8.		Spočítáme úhel pro výseč první známky. Do buňky D2 zapíšeme: =C2*360°	
9.	75	Potáhnutím za pravý dolní roh určíme hodnoty i pro ostatní možnosti.	

Na kružnici vyneseme body posunuté o příslušný úhel.

10.	Vstup:	Do vstupního pole zadáme příkaz:	Rotace(B,D2,A)
11.	Vstup:	Do vstupního pole zadáme příkaz:	Rotace(B',D3,A)
12.	Vstup:	Do vstupního pole zadáme příkaz:	Rotace(B",D4,A)

Poslední rotace není potřeba.

Nyní přejdeme k vytvoření jednotlivých výsečí.

13.	Vstup:	Do vstupu zadáme příkaz:	<pre>KruhovaVysecDanaUhlem(A,B,B')</pre>
14.	Vstup:	Do vstupu zadáme příkaz:	<pre>KruhovaVysecDanaUhlem(A,B',B")</pre>
15.	Vstup:	Do vstupu zadáme příkaz:	KruhovaVysecDanaUhlem(A,B",B)

Vzhledem k tomu, že některé příkazy mají svůj ekvivalent v nástroji na liště nástrojů, mů-

žeme místo příkazu KruhovaVysecDanaUhlem v krocích 13-15 využít nástroj

Vyzkoušejte

Jednotlivým částem koláčového grafu můžeme změnit barvu, skrýt body, přidat popisky, případně přidat legendu.